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Abstract

This paper values fixed-income (discrete- and continuous-time) European Asian

and Australian options. We assume that the term structure of interest rates

(TSIR) is modeled by the specification proposed in Moreno, Novales, and

Platania (2018). We obtain closed-form expressions for the premiums of ge-

ometric average options and, for arithmetic average options, premiums are

computed by numerical methods.
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1 Introduction

This paper prices average call options on zero-coupon bonds and fixed strike assum-

ing that the term structure of interest rates (TSIR) is given by the model proposed

in Moreno, Novales, and Platania (2018) (Moreno et al. (2018), from now on).1

In more detail, we value Asian and Australian options. The pay-off of Asian options

depends on the average of an underlying asset price over some predetermined time

interval and the pay-off of Australian options depends on the ratio of this average

asset price and the underlying asset price at option maturity. We assume that the

average price can be geometric or arithmetic, either in discrete- or continuous-time.

These options constitute an important family of derivatives with many applications.

Moreover, there are some advantages in trading Asian options as, for instance, a)

their pay-off is less volatile as it depends on an average price instead of a terminal

one, implying that Asian options are cheaper than (equivalent) European options

and b) it is more difficult to manipulate an average price than a final one. As a

result, these options can be an adequate hedging instrument for traders who act

continuously over finite periods.

Since it can be difficult (or even impossible) to find the probability distribution of

the average price of an underlying asset, obtaining an analytical pricing expression

for these options can be a challenging task. The general conclusion of the academic

literature is that geometric Asian options can be valued analytically under certain

assumptions while pricing arithmetic Asian options requires numerical methods as,

for instance, Monte Carlo simulations, numerical integration, or approximations of

the true distribution of the average price.

Some examples of Asian stock options pricing departing from Black-Scholes assump-

tions can be found in Kemna and Vorst (1990), Turnbull and Wakeman (1991),

Ritchken et al. (1993), Geman and Yor (1993), Rogers and Shi (1995), Boyle et al.

(1997), Angus (1999), Fusai (2004), Linetsky (2004), Sun et al. (2013), Cai, Song,

and Kou (2015), and Cui et al. (2018). As Black-Scholes assumptions are typically

not empirically satisfied (specially the constant volatility hypothesis), stochastic

1We just price call options because, after this pricing, a similar analysis for put options can be

obtained in a straightforward way by applying the put-call parity for these options.

2



volatility models have been proposed to value Asian options. Some examples are

Wong and Cheung (2004), Hubalek and Sgarra (2011), Kim and Wee (2014), Shi

and Yang (2014), and Ewald et al. (2020).

Moreno and Navas (2008) introduced Australian options, that generalize Variable

Purchase Options (VPOs), presented and priced in Handley (2000). These options

give the right to buy a stochastic number of shares that depends on the shares price

at option’s maturity. Standard VPOs are designed to finish “in-the-money” but

caps and floors on the number of shares can be included.

The underlying asset of Australian options is a ratio that can be, alternatively, a)

the underlying asset price at option’s maturity divided by the average asset price

during the option’s life or b) the inverse of the previous ratio. Assuming that

the asset price follows a geometric Brownian motions, Moreno and Navas (2008)

provided analytical “Black-Scholes type” expressions for the geometric case while,

in the arithmetic case, they applied different numerical pricing techniques.

The continuous-time models that have been proposed to analyze the TSIR can be

classified in endogenous and exogenous. Their main features are the following:

• Endogenous models assume that one or more state variables drive the TSIR

and, typically, they provide a reasonable analytical tractability and an easy

numerical implementation. However, they do not take into account the infor-

mation embedded in observed interest rates, they do not achieve a good fit

to the observed term structure, and their determination of the market risk

premium can lead to some arbitrage opportunities. Examples of one-factor

models are those proposed in Vasicek (1977) and Cox et al. (1985).

• Exogenous models take the TSIR as given and try to achieve a perfect fit

to observed interest rates. In contrast to the previous models, they do not

need to make any assumption on the market risk premium but, in general,

it is difficult to obtain an analytical derivatives pricing and their practical

implementation is computationally demanding as, in many cases, they deal

with non-Markovian processes.

In this paper we use the one-factor model for the instantaneous interest rate pre-

sented in Moreno et al. (2018) that generalizes the model proposed in Vasicek (1977).
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These authors assumed that the instantaneous risk-free interest rate converges to

a certain long-term value (mean-reversion level) that is given by a Fourier series

and, then, this value displays a cyclical behavior. Under this functional form, they

checked that interest rates follow a Gaussian distribution and, then, the price of a

zero-coupon bond follows a lognormal distribution. Also, they provided a closed-

form pricing expression for any fixed income derivative and showed that a great

flexibility in interest rates is achieved, allowing for a better empirical behavior while

maintaining its analytical tractability.

Under this model, we will provide analytical expressions for the premium of geo-

metric Asian calls and, for arithmetic averages, we will apply numerical methods.

We will compare these results with those obtained for the particular case that was

mentioned, Vasicek (1977). Later, we will extend the pricing part to Australian call

options. Similarly to Asian options, we will obtain closed-form expressions for the

premiums of geometric Australian options and we will compute numerically these

premiums for the arithmetic case.

This paper is organized as follows. Section 2 presents some general statistical results

about the multivariate Gaussian distribution and describes the main features of the

derivatives that we will value and some relationships between them. Section 3

introduces the TSIR model proposed in Moreno et al. (2018) and some key pricing

results that will be employed later. Sections 4 and 5 provide pricing results for,

respectively, discrete- and continuous-time (geometric and arithmetic) Asian and

Australian options for both the Moreno et al. (2018) and Vasicek (1977) models

and discuss the obtained results. Finally, Section 6 summarizes our main conclusions

and proposes some lines of further research.

2 Preliminary results

In this section we present preliminary results, both statistical and financial, which

will be used in the following sections. The statistical results focus on the main prop-

erties of the multivariate Gaussian distribution, while the financial ones introduce

the derivatives we will value and some relationships between them.
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2.1 Multivariate Gaussian distributions

We present some basic definitions and statistical results about the multivariate Gaus-

sian distribution that we will use along this paper. First we introduce the equivalent

of the univariate standard Gaussian random variable.

Definition 2.1. A real random vector Z = (z1, z2, . . . , zk)
′ is called a standard

Gaussian random vector if all its components zi, i = 1, . . . , k are i.i.d. and each

one follows a standard (zero-mean unit-variance) Gaussian random variable.

A definition of the multivariate Gaussian that does not involve the distribution

function follows.

Definition 2.2. A real random vector Y = (y1, y2, . . . , yk)
′ is called a Gaussian

random vector if there exists a standard Gaussian random vector Z ∈ Rl×1, a vector

µ ∈ Rk×1, and A ∈ Rk×l, such that Y = AZ + µ. Here, Ω = AA′ is the variance-

covariance matrix.

In the case that Ω is singular, the corresponding distribution has no density.

We should remark that the sum of Gaussian random variables does not always

follows a Gaussian distribution. The following result presents a characterization in

terms of the multivariate Gaussian random variable.

Proposition 2.3. Let {yi}i=1,2,...,k be a collection of real-valued random variables.

Then, Y = (y1, y2, . . . , yk)
′ follows a multivariate Gaussian distribution if and only

if, for all b ∈ Rk×1, the real random variable b′Y follows a univariate Gaussian

distribution.

In this case, let µ and Ω denote, respectively, the mean and variance-covariance

matrix of Y . Then, the mean and variance of b′Y are b′µ and b′Ωb, respectively. ■

2.2 Asian options

We introduce now Asian options either in discrete- or continuous-time, assuming

both geometric and arithmetic average and we also present the put-call parity for

these options.
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Given the time interval [t, T ], consider the partition {T0 = t, T1, . . . , Tn = T}. For

i = 1, 2, . . . , n, let rTi
denote the interest rate at time Ti, let Pi = P (rTi

, Ti, Tb)

denote the price at time Ti of a zero-coupon bond that matures at time Tb, and let

wi be deterministic functions such that
∑n

i=1wi = 1. Each weight wi will indicate

the importance of the bond price at time Ti in the average price. The simplest case

is when wi = 1/n,∀i.

The weighted geometric and arithmetic average bond prices in discrete-time are

given by2

G(n) =
n∏

i=1

Pwi
i , A(n) =

n∑
i=1

wiPi (1)

In a similar way, we can define weighted (geometric and arithmetic) average bond

prices in continuous time. To this aim, let f(s) be a deterministic function defined

on the time interval [t, T ] such that
∫ T

t
f(s)ds = 1. Similarly to the discrete weights

wi, this function indicates the importance of the bond price at time s in the average

price. The simplest case is when f(s) = 1/(T − t), ∀s ∈ [t, T ].

Then, the weighted geometric and arithmetic average bond prices in continuous-time

are defined as

G(∞) = exp

(∫ T

t

f(s) ln(Ps) ds

)
, A(∞) =

∫ T

t

f(s)Ps ds (2)

Consider Asian options with strike X, maturity T , and whose underlying is Aver,

the average price of the aforementioned zero-coupon bond, see equations (1)-(2).

For a call (resp., put), the final pay-off is the positive part of Aver − X (resp.,

X − Aver).

Let cA(rt, t, T ;Tb) and pA(rt, t, T ;Tb) denote, respectively, the premiums at time t of

both options. The following Proposition provides the corresponding put-call parity.

Proposition 2.4. Under no-arbitrage opportunities, the relation between the pre-

miums of these Asian options is given by

pA(rt, t, T ;Tb) + P (rt, t, T )Ẽt [Aver] = cA(rt, t, T ;Tb) + P (rt, t, T )X

or, equivalently, cA(rt, t, T ;Tb)−pA(rt, t, T ;Tb) = P (rt, t, T )
(
Ẽt [Aver]−X

)
, where

Ẽt [Aver] denotes the conditional expectation (under the risk-neutral measure P̃ ) at

time t of the average bond price. ■

2Along this paper we will use the term average to refer to both weighted or unweighted average.
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We will see that this conditional expectation can be computed analytically for geo-

metric Asian options while, for arithmetic ones, numerical methods must be applied.

2.3 Australian options

In this subsection we describe Australian options in discrete- and continuous-time,

assuming either geometric or arithmetic average. We also present a relationship

between Asian and Australian options and the put-call parity for Australian options.

Australians options were introduced in Moreno and Navas (2008). Their underlying

asset is the ratio between the average price of an asset during the life option and

the asset price at option maturity or, alternatively, the inverse of this ratio.

Similarly to Asian options, geometric or arithmetic averages can be considered in

discrete- or continuous-time. Using equation (1), the expressions for geometric and

arithmetic discrete-time average ratios are the following:

G(n)

Pn

= (Pn)
−1 ·

n∏
i=1

Pwi
i (3)

Pn

G(n)
= Pn ·

n∏
i=1

P−wi
i (4)

A(n)

Pn

= (Pn)
−1 ·

n∑
i=1

wiPi (5)

Pn

A(n)
= Pn ·

[
n∑

i=1

wiPi

]−1

(6)

In a similar way, using equation (2), the expressions for geometric and arithmetic

continuous-time average ratios are the following:

G(∞)

PT

= (PT )
−1 · exp

(∫ T

t

f(s) ln(Ps) ds

)
(7)

PT

G(∞)
= PT · exp

(
−
∫ T

t

f(s) ln(Ps) ds

)
(8)

A(∞)

PT

= (PT )
−1 ·

∫ T

t

f(s)(Ps) ds (9)

PT

A(∞)
= PT ·

(∫ T

t

f(s)Ps ds

)−1

(10)
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The next Proposition states a relationship between Australian and Asian options.

Proposition 2.5. For the ratios (3)-(5), Australian options are a particular case

of Asian options.

Proof. Consider the relative asset price P ∗
i =

Pi

Pn

, i = 1, . . . , n. Then, the ratios

(3)-(5) can be expressed as (geometric or arithmetic) averages:

G(n)

Pn

=
n∏

i=1

(P ∗
i )

wi ,
Pn

G(n)
=

n∏
i=1

(P ∗
i )

−wi ,
A(n)

Pn

=
n∑

i=1

wiP
∗
i

Then, for these ratios, Australian options are a particular case of Asian options. ■

As with Asian options, we can also present a put-call parity for Australian options.

Consider Australian options with strikeX and maturity T being its underlying Ratio

that denotes one of the ratios described in equations (3)-(10). The final pay-off for

a call (resp., put) is the positive part of Ratio−X (resp., X −Ratio).

Let cAUS(rt, t, T ;Tb) and pAUS(rt, t, T ;Tb) denote, respectively, the premiums at time

t of both options. The following Proposition provides the put-call parity.

Proposition 2.6. Under no-arbitrage opportunities, the relationship between the

premiums of these Australian options is given by

pAUS(rt, t, T ;Tb) + P (rt, t, T )Ẽt [Ratio] = cAUS(rt, t, T ;Tb) + P (rt, t, T )X

or, equivalently, cAUS(rt, t, T ;Tb)− pAUS(rt, t, T ;Tb) = P (rt, t, T )
[
Ẽt [Ratio]−X

]
.

■

As we will see, the conditional expected value of the geometric ratio can be computed

analytically. For arithmetic ratios, numerical methods will be required.

3 Models for interest rates

This section introduces the TSIR models that we will use to price Asian and Aus-

tralian options. In short, we present the Moreno et al. (2018) model and a particular

case of this model, namely, the specification proposed in Vasicek (1977).

8



Let rt denote the instantaneous interest rate at time t. Moreno et al. (2018) assumed

that the time evolution of rt is given by the following stochastic differential equation

drt = k(f(t)− rt)dt+ σdWt (11)

where k, σ ∈ R+ denote, respectively, the speed of mean-reversion and the volatility

of the diffusion, and Wt is a standard Wiener process. In addition, the mean-

reversion level, f(t), follows a time-dependent process driven by a Fourier series.

f(t) =
∞∑

m=0

Re
[
Ame

imωt
]

(12)

These authors consider only the real part of the Fourier series since it is the only

part with economic sense. They mention that Am ∈ C for all m, so there is a phase

factor contained in Am. In more detail, Am = Am,x + iAm,y, where Am,x, Am,y ∈ R
and denote, respectively, the amplitude and the phase of the fluctuations of the

instantaneous interest rate. Finally, the parameter ω represents the time frequency.

This model nests that in Vasicek (1977) by taking Am = 0 for m ∈ N − {0} in

equation (12). In this case, equation (11) becomes

drt = k(µ− rt)dt+ σdWt (13)

where µ = A0 indicates the (constant) mean-reversion level at which interest rates

converge.

Let Λ(rt, t) denote the market price of risk, which is assumed to be constant,

Λ(rt, t) = λ. Then, the risk-neutral version of the process (11) is given by

drt = k(α + g(t)− rt)dt+ σdW̃t (14)

with

α = A0 −
λσ

k

g(t) = f(t)− A0 =
∞∑

m=1

Re
[
Ame

imωt
]

where A0 ∈ R and W̃t = Wt+λt is a standard Wiener process under the risk-neutral

measure P̃ . Moreno et al. (2018) obtain the following Proposition that provides the

solution of the stochastic differential equation (11).
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Proposition 3.1. The solution of the risk-neutral process (11) followed by the in-

stantaneous interest rate is given by

rs =e−k(s−t)rt + (1− e−k(s−t))α +
∞∑

m=1

Re

[
kAm

k + imω
(eimωs − e−k(s−t)+imωt)

]
+ σ

∫ s

t

e−k(s−u)dW̃u, for all s > t

■

For illustrative purposes of the flexibility that this model can offer, Figure 1 (bor-

rowed from Moreno et al. (2018)) shows the very different shapes that the TSIR

can take under this model.

Proposition 3.1 shows that the instantaneous interest rate follows a conditional

Gaussian distribution. Its first two statistical moments under the measure P̃ are

Ẽt[rT ] = e−k(T−t)rt + (1− e−k(T−t))α +
∞∑

m=1

Re

[
kAm

k + imω
(eimωT − e−k(T−t)+imωt)

]
(15)

Ṽt[rT ] = H(2k, T − t) σ2 (16)

where

H(p, q) =
1− e−pq

p
(17)

Let P (rt, t, T ) denote the price at time t of a zero-coupon bond that pays $1 at

maturity T . These authors get the pricing partial differential equation (PDE) that

must be verified by the price of any derivative

1

2
σ2Prr(rt, t, T ) + k(α + g(t)− rt)Pr(rt, t, T ) + Pt(rt, t, T )− rtP (rt, t, T ) = 0 (18)

For this zero-coupon bond, the terminal condition is P (rT , T, T ) = 1 for all rT .

Using probabilistic techniques, this price can be written as a conditional expectation

under P̃ ,

P (rt, t, T ) = Ẽ
[
e−

∫ T
t rsds |rt

]
Working on this expression these authors obtain the following Proposition that pro-

vides an exponential-affine functional form for bond pricing.
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Proposition 3.2. The price at time t of a zero-coupon bond with maturity T and

that amortizes with face value $1 is given by

P (rt, t, T ) = eA(t,T )−B(t,T )rt

where

A(t, T ) =− σ2

4k
B2(t, T ) + r∗(B(t, T )− (T − t))

−
∞∑

m=1

Re

[
kAm

mω(k + imω)
(eimωt(i−mωB(t, T ))− ieimωT )

]
B(t, T ) =H(k, T − t)

where H(·, ·) is given by (17) and r∗ = α− σ2

2k2
. ■

Remark 3.3. Note that taking Am = 0, ∀m ∈ N−{0} in expression (11) we obtain

the Vasicek (1977) model. Then, we can obtain the analogous results presented in

this section for the Vasicek (1977) model just eliminating the mentioned values for

the Am coefficients. ■

4 Pricing of discrete-time options

In this Section, we will value Asian and Australian calLs where the average bond

price is computed in discrete-time. We will consider either geometric and arithmetic

averages and will obtain closed-form expressions for the premiums of geometric

options under the Moreno et al. (2018) model. Later, applying Remark 3.3, the

corresponding formula for the Vasicek (1977) model immediately arises. Arithmetic-

discrete options will be valued numerically by Monte Carlo simulations.

Proposition 4.1. Let Rd = (rT1 , rT2 , . . . , rTn)
′ ∈ Rn×1 be a random vector whose el-

ements are the instantaneous interest rate at different times Ti, i = 1, . . . , n. Then,

the conditional distribution of Rd given rt, with t < Ti for all i, is a multivari-

ate Gaussian distribution. Specifically, the conditional mean, µ(n), and variance-
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covariance matrix, Ω(n), are given by

µ(n) =
(
Ẽt[rT1 ], . . . , Ẽt[rTn ]

)′
∈ Rn×1

Ω(n) =


Ṽt(rT1) C̃ovt(rT1 , rT2) · · · C̃ovt(rT1 , rTn)

C̃ovt(rT1 , rT2) Ṽt(rT2) · · · C̃ovt(rT2 , rTn)
...

. . .
...

C̃ovt(rT1 , rTn) · · · C̃ovt(rTn−1 , rTn) Ṽt(rTn)

 ∈ Rn×n

where, for all i = 1, . . . , n, Ẽt[rTi
] and Ṽt(rT1) are given by (15) and (16) respectively

and

C̃ovt(rTi
, rTj

) = u(t, Ti, Tj) =
σ2

2k
e−k(Ti+Tj)(e2kTi − e2kt), Ti < Tj

Proof. See Technical Appendix. ■

Using the equivalent definition for the multivariate Gaussian distribution given in

Proposition 2.3 we obtain the next result.

Corollary 4.2. Let Rd = (rT1 , rT2 , . . . , rTn)
′ ∈ Rn×1 be a random vector whose

elements are the instantaneous interest rate at times Ti, i = 1, . . . , n. Then, given

rt, for all a ∈ Rn×1, the linear combination a′Rd follows a conditional univariate

Gaussian distribution with mean a′µ(n) and variance a′Ω(n)a, where µ(n) and Ω(n)

are given by Proposition 4.1. ■

This result shows that the variables rT1 , . . . , rTn do not need to be independent to

find the distribution of a linear combination of these random variables.

Now we can present in the next Proposition the closed-form expression for the value

of any derivative whose final pay-off depends on a linear combination of the interest

rate at different times, when the instantaneous interest rate follows the process given

by (11).

Proposition 4.3. Assume that the interest rate evolves as given by (11). Let Rd =

(rT1 , rT2 , . . . , rTn)
′ ∈ Rn×1 be a random vector whose elements are the instantaneous

interest rates at times Ti, i = 1, . . . , n and a ∈ Rn×1. Then, given rt, the value at

time t of any interest rate derivative with terminal pay-off U(a′Rd) is given by

U(rt, t, T ) = P (rt, t, T )Ẽ[U(r′)|rt], r′ ∼ N(M(n) −Q(n), V
2
(n))
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where

M(n) ≡M(n)(rt, t, T ) = a′µ(n)

V 2
(n) ≡V 2

(n)(t, T ) = a′ Ω(n) a

Q(n) ≡Q(n)(t, T ) =
σ2

2
a′h(n)

where µ(n) and Ω(n) are given by Proposition 4.1 and h(n) = (H2(k, T1 − t), . . . , H2(k, Tn − t))
′

∈ Rn×1, with H(·, ·) given by (17).

Proof. See Technical Appendix. ■

Remark 4.4. Note that taking Rd = rTn and a = 1 we obtain the general pricing

formula for a derivative whose final pay-off is a function of the interest rate at option

maturity. Then, this result generalizes the theory in Moreno et al. (2018). ■

4.1 Pricing of geometric Asian calls

Working on the expression (1), we can express G(n) = eC(n)−b′
(n)

Rd where C(n) =∑n
i=1wiA(Ti, Tb), b(n) = (w1B(T1, Tb), . . . , wnB(Tn, Tb))

′ andRd = (rT1 , rT2 , . . . , rTn)
′.

Let denote G̃(n) = eC(n)−r′ , with r′ following the conditional distribution given in

Proposition 4.3, with a = b(n). Then, G̃
(n) follows a conditional lognormal distribu-

tion with Ẽt

[
G̃(n)

]
= eE(n)+

1
2
V 2
(n) , where E(n) = C(n) −M(n) +Q(n), with M(n), V

2
(n),

and Q(n) as given in Proposition 4.3.

Now the Asian call premium is obtained using Proposition 4.3.

Proposition 4.5. Consider an Asian call option with strike X and maturity T .

The underlying is the geometric-discrete average of the price of a zero-coupon bond

with maturity Tb > T . If the time evolution of the instantaneous interest rate follows

the process (11), then the premium at time t of this call is given by

cA(rt, t, T ;Tb) = P (rt, t, T )
[
Ẽt

[
G̃(n)

]
N(d1)−XN(d2)

]
where P (rt, t, T ) is given by Proposition 3.2 and

d1 =

ln

(
Ẽt[G̃(n)]

X

)
+ 1

2
V 2
(n)

V(n)

, d2 = d1 − V(n)

13



Proof. See Technical Appendix. ■

Table 1 provides the premiums of geometric Asian calls using the Moreno et al.

(2018) and Vasicek (1977) models.3 In both models, we consider different values for

the parameters that affect the option premium and several number of monitoring

dates n. Obviously, the case n = ∞ corresponds to continuous-time calls, analyzed

and priced in the next Section.

To complement this information, Figures 2 to 6 show, respectively, how the premium

of geometric-discrete Asian calls changes as a function of the TSIR parameters (speed

of mean-reversion, constant term in the long-term value (µ or α), and diffusion

coefficient), the option maturity, and the initial instantaneous interest rate. These

Figures are computed for n = 100 but we have also computed these Figures for

geometric-continuous calls and the results are qualitatively the same. These Figures

are available upon request.

If the mean-reversion level is higher than the initial interest rate, we can see the

following features:

• A higher value in the speed of mean-reversion implies a lower premium in

Asian calls. The reason is twofold: a) there is a lower uncertainty in interest

rates and hence in the zero-coupon bond price and its average and b) interest

rates tend to higher values and this leads to a lower price of the zero-coupon

bond and, then, in the average bond price.

• When the constant term in the level of mean-reversion increases, the option

premium also decreases, converging quickly to zero. This is because interest

rates tend to higher values and, then, the price of the zero-coupon bond de-

creases, implying a decrease in the average bond price and, then, in the option

premium.

• Option premium increases with the diffusion coefficient. This is because this

parameter affects positively to the variance of the interest rates and hence,

there is more uncertainty in the price of the zero-coupon bond and its average.

• A higher option maturity implies two effects:

3For simplicity, all the Tables and Figures are based on the simplest weights, that is, wi = 1/n,∀i
and f(s) = 1/(T − t), ∀s ∈ [t, T ] for, respectively, discrete- and continuous-time options.
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i) First, there is more uncertainty in the price of the zero-coupon along the

life of the option and this leads to a higher option premium.

ii) Depending on the initial parameters, P (rt, t, T ) may decrease and this

would lead to a lower option premium.

As a consequence, the premium of Asian calls can increase or decrease with

the option maturity depending on the relative importance of these two effects.

• Finally, a higher initial instantaneous interest rate implies a lower premium of

Asian calls because the discount factor, the zero-coupon bond price, and the

average bond price reach lower values.

Conversely, if the mean-reversion level is lower than the initial interest rate, the

effect of changing these parameters on these call premiums is qualitatively the same

as before except for the speed of mean-reversion. In this case, a higher speed of

mean-reversion can imply higher premiums. This is because, as before, there is

lower uncertainty in interest rates but now the mean-reversion value can increase

the bond price along the option life, and, then, the average bond price.

4.2 Pricing of geometric Australian calls

As in Section 4.1, we can express
G(n)

Pn

= eC
∗
(n)

−b∗
′

(n)
RdA and

Pn

G(n)
= e−C∗

(n)
+b∗

′
(n)

Rd ,

where C∗
(n) =

∑n
i=1wiA(Ti, Tb)−A(Tn, Tb), b

∗
(n) = (w1B(T1, Tb), . . . , (wn − 1)B(Tn, Tb))

′

and Rd = (rT1 , rT2 , . . . , rTn)
′.

Let denote
G̃(n)

P̃n

= eC∗(n)−r′ and
Pn

G(n)
= e−C∗(n)+r′ , with r′ following the conditional

distribution given in Proposition 4.3 with a = b∗(n). These ratios follow a conditional

lognormal distribution with conditional expectation given as

Ẽt

[
G̃(n)

P̃n

]
= eE

∗
(n)

+ 1
2
V ∗2
(n) , Ẽt

[
P̃n

G̃(n)

]
= e−E∗

(n)
+ 1

2
V ∗2
(n) (19)

with E∗
(n) = C∗

(n) −M∗
(n) +Q∗

(n), where M∗
(n), Q

∗
(n), and V ∗2

(n) are given in Proposition

4.3 with a = b∗(n).
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Since
G̃(n)

P̃n

,
G̃(n)

P̃n

, and G̃(n) follows the same conditional distribution with different

statistical moments, the Australian call premium can be obtained using Proposition

4.3 in the same way as in Proposition 4.5.

Proposition 4.6. Consider a geometric-discrete Australian call with strike X and

maturity T . The underlying can be the ratio
G(n)

Pn

or
Pn

G(n)
. If the time evolution

of the instantaneous interest rate follows the process (??), the premium at time t of

this call is given by

cAUS(rt, t, T ;Tb) = P (rt, t, T )
[
Ẽt[·]N(d1)−XN(d2)

]
where P (rt, t, T ) is given by Proposition 3.2 and

d1 =

ln

(
Ẽt[·]
X

)
+

1

2
V ∗2
(n)

V ∗
(n)

, d2 = d1 − V ∗
(n)

where Ẽt[·] represents the conditional expected value of the respective ratio, see (19).

■

Table 2 shows the premium of geometric Australian calls, using the Moreno et al.

(2018) and Vasicek (1977) models. We consider different values for the parameters

that affect the option premium and several number of monitoring dates n. In more

detail, Figures 7 to 11 show, respectively, how the premium of geometric-discrete

Australian calls change as a function of the speed of mean-reversion, the diffusion

coefficient, the constant term in the level of mean-reversion, the option maturity,

and the instantaneous interest rate at initial time.

In this case the effect of changes in the different parameters on the call premium

depends on both the zero-coupon bond price at option maturity and its average

along the option life. So, the current analysis can be different from the analysis

provided in Subsection 4.1.

The main qualitative conclusions of Table 2 are as follows:

• Higher values in the speed of mean-reversion imply less uncertainty in the price

of the zero-coupon along the life of the option. Also, when α increases, interest

16



rates tend to higher values, then the price of a zero-coupon bond decreases

and hence the average bond price decreases too.

This implies two effects on Australian calls:

i) The ratios
G(n)

Pn

and
Pn

G(n)
can increase or decrease, depending on the

relative change in both numerator and denominator. Then the option

premium can increase or decrease.

ii) Based on the initial parameters, P (rt, t, T ) may decrease and this leads

to a lower premium.

Then, the premium of Australian calls can increase or decrease (monotonically

or not) with the level or the speed of mean-reversion depending on the relative

importance of these two effects.

• As in Moreno and Navas (2008), we can see that the effect of a higher diffusion

coefficient on Australian calls can be not monotonous. The reason is that, even

there is more uncertainty in the price of the bond and in its average, the effect

on the ratios of a higher diffusion coefficient changes for the different values of

this coefficient.

• The effect of a higher option maturity can imply two effects:

i) First, there is more uncertainty in the price of the zero-coupon bond along

the life of the option and this leads to a higher call premium.

ii) Depending on the initial parameters, P (rt, t, T ) may decrease and this

leads to a lower call premium.

As a consequence, the premium of Australian calls can increase or decrease

(monotonically or not) with respect to the option maturity depending on the

relative importance of these two effects.

• Finally, a higher initial instantaneous interest rate implies two effects on the

premium of Australian calls:

i) The ratios
G(n)

Pn

and
Pn

G(n)
can increase or decrease, depending on the

relative change in both numerator and denominator. Then the option

premium can increase or decrease.

17



ii) The discount factor P (rt, t, T ) decrease and this leads to a lower premium.

Then, the premium of Australian calls can increase or decrease as a function

of the initial interest rate.

4.3 Pricing of arithmetic Asian calls

Table 3 includes the premiums of arithmetic Asian calls using the Moreno et al.

(2018) and Vasicek (1977) models. We can see that, under the same conditions, the

arithmetic premium is higher than the geometric premium. The reason is that the

geometric average is a lower bound of the arithmetic average and, as we are dealing

with calls, the higher the underlying value, the higher the option premium.

For the sake of brevity, we do not include Figures for these calls as they are qual-

itatively analogous to the geometric-discrete Asian calls, that is, the effect of the

different parameters on the premiums of Asian calls is qualitatively the same for

both arithmetic or geometric averages. This also happens for arithmetic Australian

calls and then we skip all these Figures, being all of them available upon request.

4.4 Pricing of arithmetic Australian calls

As we do not have an analytical pricing expression for arithmetic Asian calls, we

can not obtain an analytical expression for the premium of arithmetic Australian

calls. Then, these options will be also valued numerically by means of Monte Carlo

simulations.

Recall that, by Proposition 2.5, the arithmetic-discrete Australian call with ratio

A(n)/Pn can be interpreted as Asian option but this is not the case for the Australian

call with ratio Pn/A
(n).

Table 4 provides the premiums of arithmetic Australian calls, using the Moreno

et al. (2018) and Vasicek (1977) models. In this case, with the same conditions,

the premium of the call for the ratio A(n)/Pn is higher than that of the equivalent

geometric call (see Table 2), and the opposite happens for the ratio Pn/A
(n). As

in Asian options, the reason is based on the comparison between arithmetic and

geometric averages.
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5 Pricing of continuous-time options

We will value now Asian and Australian call options in which the average bond price

is computed in continuous-time, considering geometric and arithmetic averages. The

distribution of the continuous-time arithmetic average is unknown and, then, it is

approximated by the discrete-time arithmetic average with a very high value of n. As

in the discrete-time case, Arithmetic-continuous options will be valued numerically

by Monte Carlo simulations.

Then, we analyze now the geometric average case. As in Section 4, geometric call

options will be valued analytically under the Moreno et al. (2018) model and we will

apply Remark 3.3 to obtain closed-form expressions for the Vasicek (1977) model.

In this Section, the pricing methodology is based mainly in the fact that, similarly

to the proof of Proposition 5.3,
∫ T

t
g(s)rsds follows a Gaussian distribution with

mean
∫ T

t
g(s)Ẽt[rs] ds and variance σ2

∫ T

t

(∫ T

s
g(s)e−kudu

)2
e2ksds, assuming that(∫ T

s
g(s)e−kudu

)2
is integrable in [t, T ].

Proposition 5.1. Let Rc =
(∫ T

t
g(s)rsds, rT

)′
be a random vector with rs the in-

stantaneous interest rate at time s. Then, given rt with t < T , Rc follows a condi-

tional bivariate Gaussian distribution. Specifically, the conditional mean, µ(∞), and

variance-covariance matrix, Ω(∞), are given by

µ(∞) =

(
Ẽt

[∫ T

t

g(s)rsds

]
, Ẽt [rT ]

)

Ω(∞) =

 Ṽt

(∫ T

t
g(s)rsds

)
C̃ovt

(∫ T

t
g(s)rsds, rT

)
C̃ovt

(∫ T

t
g(s)rsds, rT

)
Ṽt(rT )


with

Ẽt

[∫ T

t

g(s)rsds

]
=

∫ T

t

g(s)Ẽt[rs]ds

Ṽt

(∫ T

t

g(s)rsds

)
= σ2

∫ T

t

(∫ T

s

g(s)e−kudu

)2

e2ksds

C̃ovt

(∫ T

t

g(s)rsds, rT

)
= σ2

∫ T

t

e−k(T−2s)

(∫ T

s

g(s)e−kudu

)
ds
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where Ẽt [rT ] and Ṽt(rT ) are given by (15) and (16). ■

Corollary 5.2. Let Rc =
(∫ T

t
g(s)rsds, rT

)′
be a random vector with rs the instan-

taneous interest rate at time s. Then, given rt, t < s, for all a ∈ R2×1, the linear

combination a′Rc follows a conditional univariate Gaussian distribution with mean

a′µ(∞) and variance a′Ω(∞)a, where µ(∞) and Ω(∞) are given by Proposition 4.1. ■

We present now the continuous-time version of Proposition 4.3.

Proposition 5.3. Assume that the interest rate evolves as given by (11). Let Rc =(∫ T

t
g(s)rsds, rT

)′
and a ∈ R2×1. Then, given rt, the value at time t of any interest

rate derivative with terminal pay-off U (a′Rc) is given by

U(rt, t, T ) = P (rt, t, T )Ẽ[U(r′)|rt], r′ ∼ N(M(∞) −Q(∞), V
2
(∞))

with

M(∞) ≡M(∞)(rt, t, T ) = a′µ(∞)

Q(∞) ≡Q(∞)(t, T ) = a′q(∞)

V 2
(∞) ≡V 2

(∞)(t, T ) = a′Ω(∞)a

where µ(∞) and Ω(∞) are given by Proposition 5.1, and

q(∞) = σ2

(
1

k

∫ T

t

(
eks − e−k(T−2s)

)(∫ T

s

g(u)e−kudu

)
ds,

1

2
H2(k, T b− t)

)
with H(·, ·) given by (17).

Proof. See Technical Appendix. ■

5.1 Pricing of geometric Asian calls

Working on (2), we can express G(∞) = e
∫ T
t f(s)A(s,Tb)ds−

∫ T
t f(s)B(s,Tb)rsds. Let G̃(∞) =

eC(∞)−r′ where C(∞) =
∫ T

t
f(s)A(s, Tb)ds and r′ follows the conditional distribution

given in Proposition 5.3 with g(s) = f(s)B(s, Tb) and a = (1, 0)′. Then, G̃(∞) follows

a conditional lognormal distribution with conditional expectation,

Ẽt

[
G̃(∞)

]
= eE(∞)+

1
2
V 2
(∞) (20)
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with E(n) = C(∞) −M(∞) +Q(∞), where M(∞), Q(∞), and V 2
(∞) are given by Propo-

sition 5.3.

The next Proposition provides the premium of geometric-continuous Asian calls.

Proposition 5.4. Consider an Asian call option with strike X and maturity T .

The underlying is the geometric-continuous average of the price of a zero-coupon

bond with maturity Tb > T . If the time evolution of the instantaneous interest rate

follows the process (11), then the premium at time t of this call is given by

cA(rt, t, T ;Tb) = P (rt, t, T )
[
Ẽt

[
G̃(∞)

]
N(d1)−XN(d2)

]
where P (rt, t, T ) is given by Proposition 3.2 and

d1 =

ln

(
Ẽt[G̃(∞)]

X

)
+ 1

2
V 2
(∞)

Σ(∞)

, d2 = d1 − V(∞)

■

5.2 Pricing of geometric Australian calls

As in Section 4.1 we can express
G(∞)

PT

= eC
∗
(∞)

−b∗
′

(∞)
Rc and

PT

G(∞)
= e−C∗

(∞)
+b∗

′
(∞)

Rc ,

where C∗
(∞) =

∫ T

t
f(s)A(s, Tb)ds − A(Tn, Tb), b∗(∞) = (−1, B(T, Tb)) and Rc =(∫ T

t
f(s)B(s, Tb)rsds, rT

)′
.

Let denote
G̃(∞)

P̃n

= eC∗(∞)−r′ and
PT

G(∞)
= e−C∗(∞)+r′ , where r′ follows the conditional

distribution given in Proposition 5.3, with g(s) = f(s)B(s, Tb) and a = b∗(∞). These

ratios follow a conditional lognormal distribution with expectations given by

Ẽt

[
G̃(∞)

P̃T

]
= eE

∗
(∞)

+ 1
2
V ∗2
(∞) , Ẽt

[
P̃T

G̃(∞)

]
= e−E∗

(∞)
+ 1

2
V ∗2
(∞) (21)

with E∗
(∞) = C∗

(∞) −M∗
(∞) +Q∗

(∞), where M∗
(∞), Q

∗
(∞), and V ∗2

(∞) are given in Propo-

sition 4.3, with g(s) = f(s)B(s, Tb) and a = b∗(∞).

Proposition 5.5. Consider a geometric-continuous Australian call with strike X

and maturity T . The underlying can be the ratio
G(∞)

PT

or
PT

G(∞)
. If the time evolution
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of the instantaneous interest rate follows the process (11), the premium at time t of

this call is given by

cAUS(rt, t, T ;Tb) = P (rt, t, T )
[
Ẽt[·]N(d1)−XN(d2)

]
where P (rt, t, T ) is given by Proposition 3.2 and

d1 =

ln

(
Ẽt[·]
X

)
+

1

2
V ∗2
(∞)

V ∗
(∞)

, d2 = d1 − V ∗
(∞)

where Ẽt[·] represents the conditional expected value of the respective ratio, see (21).

■

As we mentioned in Subsections 4.1 and 4.2, Tables 1 and 2 show the premiums of,

respectively, geometric Asian and Australian calls under the Moreno et al. (2018)

and Vasicek (1977) models. Then, the effect of changes of the different parameters

on these premiums have qualitatively the same interpretations as those indicated in

these Subsections.

6 Conclusions

We have priced Asian and Australian calls on zero-coupon bonds assuming that

the time evolution of interest rate is given by the model proposed in Moreno et

al. (2018). This model generalizes that proposed in Vasicek (1977), introduces a

large flexibility in interest rates, and may allow for a better empirical behavior while

maintaining the analytical tractability. These authors achieve this assuming that

the long-term value of interest rates is given by a Fourier series.

For both models, we have obtained analytical expressions for the premium of geo-

metric calls while arithmetic calls have been valued by Monte Carlo simulations.

We have seen that, in both models, when we increase the constant term in the

mean-reversion level or the initial instantaneous interest rate, the premium of the

Asian call decreases. A higher speed of mean-reversion can imply a lower (higher)

premium of the Asian calls if the mean-reversion level is higher (lower) than the

initial interest rate. If the diffusion coefficient increases, the Asian call premium
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also increases. Finally, an increase in the option maturity can increase or decrease

the Asian call premium.

Finally, under the Moreno et al. (2018) model, we have also shown that the effect

of changes in the different parameters on Australian call premiums is very different.

A higher constant term of the mean-reversion level or a higher initial instantaneous

interest rate decrease the zero-coupon bond price and, then, its average price but

- depending on the relative change in both numerator and denominator in the un-

derlying ratio - the premium of these options can increase or decrease. Also, the

Australian call premium can be a non-monotonous function of either the constant

term in the diffusion coefficient, the speed of mean-reversion, or the option maturity.

A possible future line of research could be to analyze the evolution of interest rates

using the Cox et al. (1985) model assuming that the level of mean-reversion is

given by a Fourier series. Under this assumption, interest rates do not follow a

chi-square distribution as they can take negative values. Then, we should obtain its

probability distribution and a pricing expression for any derivative on a zero-coupon

bond. We also leave for further research the pricing under these models of other

exotic derivatives as, for example, compound, look-back, and barrier options.
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Technical Appendix

Proof of Proposition 4.1

Given rt ∈ R and t < Ti ≤ Tj, we have

C̃ovt(rTi
, rTj

) =Ẽt

[(
rTi

− Ẽt[rTi
]
)(

rTj
− Ẽt[rTj

]
)]

=Ẽt

[(
σ

∫ Ti

t

e−k(Ti−u)dW̃u

)(
σ

∫ Tj

t

e−k(Tj−u)dW̃u

)]
Applying the generalized Itô isometry, we get

C̃ovt(rTi
, rTj

) = σ2e−k(Ti+Tj)Ẽt

[∫ Ti

t

e2kudu

]
=

σ2

2k
e−k(Ti+Tj)(e2kTi − e2kt)

So, if we consider the variance-covariance matrix of the different rTi
values, Ω, this

matrix is non-singular and hence applying Definition 2.2 concludes the proof.

Proof of Proposition 4.3

Let Rd = (rT1 , rT2 , . . . , rTn)
′ ∈ Rn×1 be a random vector whose elements are the

instantaneous interest rate at different times Ti, i = 1, . . . , n., a ∈ Rn×1, and let

Y (t, s) =
∫ s

t
rudu. The solution of the PDE (18), with terminal condition g(a′Rd),

is given by

U(rt, t, T ) = Et[e
−Y (t,T )g(a′Rd)]

Similarly to Brigo and Mercurio (2001), we can expresss

Y (t, s) =H(k, s− t)rt − (H(k, s− t)− (s− t))α

+
∞∑

m=1

Re

[
eimωt(mωe−k(s−t) + ik −mω)− ikeimωs

mω(k + imω)
Am

]
+ σ

∫ s

t

1− e−k(s−u)

k
dWu

Then, Y (t, s) follows a conditional Gaussian distribution with meanMY and variance
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V 2
Y , given by

MY =H(k, s− t)rt − (H(k, s− t)− (s− t))α (22)

+
∞∑

m=1

Re

[
eimωt(mωe−k(s−t) + ik −mω)− ikeimωs

mω(k + imω)
Am

]
V 2
Y =

σ2

k2
[(s− t)− 2H(k, s− t) +H(2k, s− t)] (23)

Using the generalized Itô isometry, we get C̃ovt (Y (t, s), a′Rd) =
σ2

2
a′h(n) with h(n) =

(H2(k, T1 − t), . . . , H2(k, Tn − t)). Then, the random vector X = (a′Rd, Y (t, s))′

follows a bivariate Gaussian distribution with mean ξ and variance Σ, given by

ξ = (M(n),MY )
′, Σ =

(
V 2
(n) Q(n)

Q(n) V 2
Y

)

where Q(n) = C̃ovt (Y (t, s), a′Rd), and M(n) = Ẽt[a
′Rd] and V 2

(n) = Ṽt[a
′Rd] are given

in Corollary 4.2. Let p(rt, t, s, ·, ·) be the conditional density function of X. Then

U(rt, t, T ) =

∫ ∞

−∞
G(rt, r

′, t, T )g(r′)dr′, G(rt, r
′, t, T ) =

∫ ∞

−∞
e−yp(rt, t, s, r

′, y)dy

(24)

Substituting the expression of p(rt, t, s, r
′, y) in equation (24), some algebra leads

to G(rt, r
′, t, T ) = e

1
2
V 2
Y −MY f1(r

′), where f1(·) is the density function of a Gaussian

variable with mean M(n) −Q(n) and variance V 2
(n). Then

U(rt, t, T ) = e
1
2
V 2
Y −MY

∫ ∞

−∞
f1(r

′)g(r′)dr′ = P (rt, t, T )Ẽt[g(r
′)]
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Proof of Proposition 4.5

cA(rt, t, T ;Tb) = P (rt, t, T )E
[(
G(n) −X

)+ | rt
]

= P (rt, t, T )

∫ ∞

−∞

(
eE(n)+Σ(n)z −X

)+
f(z) dz

= P (rt, t, T )

∫ d2

−∞

(
eE(n)−Σ(n)z −X

) 1√
2π

e−
1
2
z2 dz

= P (rt, t, T )

(∫ d2

−∞

1√
2π

eE(n)−Σ(n)z− 1
2
z2 dz −X

∫ d2

∞

1√
2π

e−
1
2
z2 dz

)
= P (rt, t, T )

(
eE(n)+

1
2
Σ2

(n)

∫ d2

−∞

1√
2π

e−
1
2
(z+Σ(n))

2

dz −XN(d2)

)
= P (rt, t, T )

(
E
[
G(n)

] ∫ d1

−∞

1√
2π

e−
1
2
u2

du−XN(d2)

)
= P (rt, t, T )

(
E
[
G(n)

]
N(d1)−XN(d2)

)
Proof of Proposition 5.3

Let Rc =
(∫ T

t
g(s)rsds, rT

)′
be a random vector with rs the instantaneous interest

rate at time s, a ∈ R2×1, and let Y (t, s) =
∫ s

t
rudu. The solution of the PDE (18),

with terminal condition g(a′Rc), is given by

U(rt, t, T ) = Et[e
−Y (t,T )g(a′Rc)]

In the proof of Proposition 4.3 we saw that Y (t, s) follows a conditional Gaussian

distribution with mean MY and variance V 2
Y , given in expressions (22)-(23).

Using the generalized Itô isometry, we get C̃ovt (Y (t, s), a′Rc) = σ2

2
a′h(∞) with

h(∞) = σ2
(

1
k

∫ T

t

(
eks − e−k(T−2s)

) (∫ T

s
g(u)e−kudu

)
ds, 1

2
H2(k, T b− t)

)
. Then, the

random vector X = (a′Rc, Y (t, s))′ follows a bivariate Gaussian distribution with

mean ξ and variance Σ, given by

ξ = (M(∞),MY )
′, Σ =

(
V 2
(∞) Q(∞)

Q(∞) V 2
Y

)

29



where Q(∞) = C̃ovt (Y (t, s), a′Rc), and M(∞) = Ẽt[a
′Rc] and V 2

(∞) = Ṽt[a
′Rc] are

given in Corollary 4.2. Let p(rt, t, s, ·, ·) be the conditional density function of X.

Then

U(rt, t, T ) =

∫ ∞

−∞
G(rt, r

′, t, T )g(r′)dr′, G(rt, r
′, t, T ) =

∫ ∞

−∞
e−yp(rt, t, s, r

′, y)dy

(25)

Substituting the expression of p(rt, t, s, r
′, y) in equation (25), some algebra leads

to G(rt, r
′, t, T ) = e

1
2
V 2
Y −MY f1(r

′), where f1(·) is the density function of a Gaussian

variable with mean M(∞) −Q(∞) and variance V 2
(∞). Then

U(rt, t, T ) = e
1
2
V 2
Y −MY

∫ ∞

−∞
f1(r

′)g(r′)dr′ = P (rt, t, T )Ẽt[g(r
′)]
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Appendix of Figures

Figure 1: Term structure of interest rates for arbitrary set of parameters in the

Moreno et al. (2018) and Vasicek (1977) models. In both models, r0 = 0.02. For

the Vasicek (1977) model (blue line), we consider µ = 0.05, σ = 0.002 and k = 0.2. For the

Moreno et al. (2018) model, we consider three alternatives: a) Red line: α = 0.05, σ = 0.0011,

k = 0.3397, ω = 20, n = 5, A1,x = 0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172,

A3,x = 0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655. b)

Green line: α = 0.07, σ = 0.0005, k = 0.018, ω = 0.48, n = 2, A1,x = −1.8, A1,y = 1, A2,x = 1.5,

A2,y = −1.5. c) Violet line: α = 0.08, σ = 0.0002, k = 0.02, ω = 0.25, n = 1, A1,x = 0.3,

A1,y = 0.03.

Figure 2: Premium of geometric Asian calls as a function of the speed of mean-

reversion in interest rates. We consider X = 0.2, T = 10, Tb = 30, and n = 100. Blue and

red lines represent the results obtained with the Moreno et al. (2018) and Vasicek (1977) models,

respectively. In both models, λ = 0, r0 = 0.02, σ = 0.002. In the Moreno et al. (2018) model,

the remaining parameters are: ω = 20, A1,x = 0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y =

0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y =

0.0655. The first (resp., second) graph considers α = 0.05 (resp., α = −0.05) in the Moreno et

al. (2018) model and µ = 0.05 (resp., µ = −0.05) in the Vasicek (1977) model.
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Figure 3: Premium of geometric Asian calls as a function of the constant term in

the level of mean-reversion in interest rates. We consider X = 0.2, T = 10, Tb = 30, and

n = 100. Blue and red lines represent the results obtained with the Moreno et al. (2018) and

Vasicek (1977) models, respectively. In both models, λ = 0, r0 = 0.02, k = 0.02, σ = 0.002. In

the Moreno et al. (2018) model, the remaining parameters are: ω = 20, A1,x = 0.1758, A1,y =

0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y =

0.1618, A5,x = 0.0894, A5,y = 0.0655.

Figure 4: Premium of geometric Asian calls as a function of the diffusion coefficient.

We consider X = 0.2, T = 10, Tb = 30, and n = 100. Blue and red lines represent the results

obtained with the Moreno et al. (2018) and Vasicek (1977) models, respectively. In both models,

λ = 0, r0 = 0.02, k = 0.2. In the Vasicek (1977) model, µ = 0.05. In the Moreno et al. (2018)

model, the remaining parameters are: α = 0.05, ω = 20, A1,x = 0.1758, A1,y = 0.0402, A2,x =

−0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x =

0.0894, A5,y = 0.0655.
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Figure 5: Premium of geometric Asian calls as a function of the option maturity. We

consider X = 0.2, Tb = 30, and n = 100. Blue and red lines represent the results obtained with

the Moreno et al. (2018) and Vasicek (1977) models, respectively. In both models, λ = 0, r0 =

0.02, k = 0.2, σ = 0.002. In the Vasicek (1977) model, µ = 0.05. In the Moreno et al. (2018)

model, the remaining parameters are: α = 0.05, ω = 20, A1,x = 0.1758, A1,y = 0.0402, A2,x =

−0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x =

0.0894, A5,y = 0.0655.

Figure 6: Premium of geometric Asian calls as a function of the initial instantaneous

interest rate. We considerX = 0.2, T = 10, Tb = 30, and n = 100. Blue and red lines represent

the results obtained with the Moreno et al. (2018) and Vasicek (1977) models, respectively. In

both models, λ = 0, k = 0.2, σ = 0.002. In the Vasicek (1977) model, µ = 0.05. In the Moreno

et al. (2018) model, the remaining parameters are: α = 0.05, ω = 20, A1,x = 0.1758, A1,y =

0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y =

0.1618, A5,x = 0.0894, A5,y = 0.0655.
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Figure 7: Premium of geometric Australian calls as a function of the speed of mean-

reversion in interest rates. We considerX = 0.2, T = 10, Tb = 30, and n = 100. Blue and red

lines represent the results obtained in the Moreno et al. (2018) model for Australian calls with ra-

tios G(n)

Pn
and Pn

G(n) , respectively. The parameters are λ = 0, r0 = 0.02, σ = 0.002, ω = 20, A1,x =

0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x =

0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655. The first graph (resp., second) considers

α = 0.05 (resp., α = 0.1) in this model.

Figure 8: Premium of geometric Australian calls as a function of the diffusion

coefficient. We consider X = 0.1, T = 10, Tb = 30, and n = 100. Blue and red lines represent

the results obtained in the Moreno et al. (2018) model for Australian calls with ratios G(n)

Pn
and

Pn

G(n) , respectively. The parameters are λ = 0, r0 = 0.02, k = 0.8, α = 0.05, ω = 20, A1,x =

0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x =

0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655. The first graph i(resp., second) considers

α = 0.05 (resp., α = 0.08) in this model.
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Figure 9: Premium of geometric Australian calls as a function of the constant term

in the level of mean-reversion in interest rates. We considerX = 0.2, T = 10, Tb = 30, and

n = 100. Blue and red lines represent the results obtained in the Moreno et al. (2018) model for

Australian calls with ratios G(n)

Pn
and Pn

G(n) , respectively. The parameters are λ = 0, r0 = 0.02, k =

0.2, σ = 0.002, ω = 20, A1,x = 0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x =

0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655.

Figure 10: Premium of geometric Australian calls as a function of the option ma-

turity. We consider X = 0.2, Tb = 30, and n = 100. Blue and red lines represent the results

obtained in the Moreno et al. (2018) model for Australian calls with ratios G(n)

Pn
and Pn

G(n) , re-

spectively. The parameters are λ = 0, r0 = 0.02, k = 0.2, σ = 0.002, α = 0.05, ω = 20, A1,x =

0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x =

0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655
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Figure 11: Premium of geometric Australian calls as a function of the instantaneous

interest rate. We considerX = 0.2, T = 10, Tb = 30, and n = 100. Blue and red lines represent

the results obtained in the Moreno et al. (2018) model for Australian calls with ratios G(n)

Pn
and

Pn

G(n) , respectively. The parameters are λ = 0, k = 0.2, σ = 0.002, α = 0.05, ω = 20, A1,x =

0.1758, A1,y = 0.0402, A2,x = −0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x =

0.0798, A4,y = 0.1618, A5,x = 0.0894, A5,y = 0.0655.
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