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Abstract

The standard argument that plain-vanilla options provide too little (or too much) incentive

to take risks is not always correct under the realistic assumption where the capital structure

of the firm is composed of both equity and debt. Using a utility-maximization framework,

we show that the existence of debt in the firms capital structure affects the volatility chosen

by the executive and that this volatility tends to increase as the leverage increases, although

at the expense of the equity. We document the risk incentive effects of regular calls, lookback

calls, power calls and Asian calls.
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It is well known that corporate governance deals with different types of conflict of inter-

ests, among them the conflict between the providers of finance (the shareholders) and the

managers (the agents), as well as the one between the shareholders and bondholders. These

conflicts arise because the contracting parties are asymmetrically informed.

On the one hand, shareholders are uninformed about the level of effort exerted by their

managers to increase firm value. As a result, they link manager’s pay to the firm’s overall

performance so that the manager acts more on their (i.e., the shareholders) interest reducing,

therefore, the agency cost stemming from the separation between ownership and control. The

signals of performance may include stock price, accounting targets, performance-vesting eq-

uity, among others that provide incremental information about the manager’s efforts over and

above that already conveyed in the output (Hlmstrom 1979; Li and Wang 2016; Chaigneau,

Edmans, and Gottlieb 2022). On the other hand, high financial leverage may increase

shareholder-bondholder conflicts. This is because a compensation designed to solely align

managerial incentives with those of shareholders may induce risk-shifting that favors equity

holders over debtholders. To put it another way, equity investors hold convex claims over

firm assets which causes their expected payoff to rise exponentially with firm risk while

debtholder payoffs are concave due to limited upside potential of their claims (Jensen and

Meckling 1976). Hence, high risk taking implies a higher probability of losses for debtholders

without the same potential for gains that equity holders benefit from (Srivastav et al. 2014).

Given that high managerial risk taking is hurtful to bondholders, a body of literature

— see, for instance, Jensen and Meckling (1976), Sundaram and Yermack (2007), Edmans

and Liu (2011) and Kabir, Li, and Veld-Merkoulova (2013) — argues that inside debt is an

efficient form of compensation because it is associated with lower agency costs of debt given

that, just like the value of debt held by outside investors, it is sensitive to both the incidence

of bankruptcy and the liquidation value of the firm in the event of bankruptcy.1 Implicit

in these studies is that a mix of equity-based compensation and inside debt is optimal in

mitigating the foregoing conflicts of interests.

1“Inside debt”, in the language of Jensen and Meckling (1976), is primarily associated with defined benefit
pensions and deferred compensation.
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However, most of the erstwhile studies ignore the important fact that managers with

undiversified human capital are, typically, risk-averse. As such, equity-based compensation

does not always induce higher risk taking as it is commonly assumed, i.e., even when com-

pensated with equity-like securities, the manager may prefer to forgo risky but positive net

present value (NPV) projects for more certainty (Carpenter 2000; Ross 2004; Tian 2004).

Moreover, inside debt can aggravate the manager’s risk aversion which, ultimately, affects

both shareholders and bondholders’ wealth. In this connection, assuming that for each firm

volatility level the manager chooses the investment policy that yields the highest firm value, a

combination of leverage and equity-based compensation might be optimal in inducing higher

(and more desirable) risk taking.

We examine this issue by extending the utility-maximization framework of Ju, Leland,

and Senbet (2014), who study the case of an unlevered firm, to the more realistic case

of a levered firm whose capital structure includes equity, options and debt. Despite the

growing use of stock and option grants with performance-based vesting provisions (see, e.g.,

Bettis et al. 2010; Bakke et al. 2016), in this paper, we focus on equity awards with simple

time-vesting provisions in order to ease the numerical hurdles.2 Vesting periods can be an

important tool for, simultaneously, retaining executives and reducing the rent-extraction

problem (Jochem, Ladika, and Sautner 2018). We thus argue that risk-shifting, to some

extent, does not necessarily hurt bondholders as it is commonly assumed. The level at

which risk-shifting is bad to bondholders depends on several factors such as the degree of

risk aversion, the underlying investment technology and the structure of manager’s portfolio.

Nonetheless, equity-based compensation is utterly important for risk-shifting to be effective

because if managers’ interests are not aligned with those of shareholders, they might choose

any investment policy which is not necessarily the optimal one.

The introduction of debt in the firm’s capital structure has potential effects on the man-

ager’s welfare. First, if the financing decision has no effect on the total value of the firm (in

the spirit of Modigliani and Miller 1958), then any increase (resp., decrease) in the value of

debt caused by a positive (resp., negative) signal to bondholders leads to a decrease (resp.,

2A further analysis including grants with performance-vesting provisions would be an interesting topic
for future research.
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an increase) in the value of equity, as well as in the value of executive stock options. Second,

given that the firm has risky debt, from option pricing theory (e.g., Merton 1974), the value

of common stock rises when firm’s variance goes up. As a result, the value of manager’s

stock holdings and stock option holdings increases with volatility. Following Crouhy and

Galai (1994), we assume that the executive stock options have shorter maturity than debt

and that the firm reinvests the proceeds from options exercise. This is important because

most studies implicitly assume that the firm “gets rid” of the proceeds from the option exer-

cise by either paying dividends, repurchasing stock or retiring its debt. Unlike those studies,

we take into account the potential future increase in the size of the firm’s assets as a result of

options exercise, consistent with previous research (see Babenko, Lemmon, and Tserlukevich

2011).

In addition, the assumption that the maturity of debt is greater than that of the option

implies that events that are expected to occur after the call option expires, but before debt

expiration date, can implicitly affect the value of the three claims (i.e., options, stock and

debt). In our setting, the exercise of the options might not be rational when the stock price

immediately prior to the expiration date is greater than the option’s strike price, the reason

being that the exercise of the options reduces the probability of default, which causes an

increase in the value of debt and, consequently, a reduction in the share price. Thus, options

should only be exercised when the stock price immediately after the expiration date is greater

than the strike price. Third, given the convexity of the equity-like payoffs, the introduction

of debt, which, ceteris paribus, causes a reduction in the value of manager’s stock and options

holdings, leads to a decrease in the manager’s pay-performance sensitivity. This lower pay-

performance sensitivity is important as a “precommitment device” to minimize the agency

costs of debt related to the risk-shifting problem (John and John 1993).

The vast majority of firms grant traditional call options (i.e., regular or plain-vanilla call

options) as opposed to non-traditional stock options (Johnson and Tian 2000b; Dittmann,

Maug, and Spalt 2013). Notwithstanding the simplicity of these traditional options, there is

been a burgeoning number of studies — see, for instance, Johnson and Tian (2000a), Tian

(2013), Ju, Leland, and Senbet (2014) and Bernard, Boyle, and Chen (2016) — advocating
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the use of non-traditional stock options as a more effective way to induce risk taking (Ju,

Leland, and Senbet 2014) or to create incentives to increase stock price (e.g., Tian 2013;

Bernard, Boyle, and Chen 2016). These studies usually ignore dilution (except Ju, Leland,

and Senbet 2014) and do not take into account the potential future increase in the size of

the firm’s assets. Moreover, they overlook the important fact that stock can be as risky

as options in a levered firm (Merton 1974). Our paper fills this gap in the literature and

evaluates the risk incentive effects of regular calls, lookback calls, Asian calls and power call

options in the context of a levered firm.

We do not examine the incentives provided by repriciable calls or put options because

they might lead to ex post wrong incentives (see Ju, Leland, and Senbet 2014). In addition,

we also ignore the risk incentives provided by indexed executive options because they are

not, in general, a very efficient form of compensation — see Dittmann, Maug, and Spalt

(2013). With respect to regular calls, we show that managers prefer a combination of shares

of stock and options in order to obtain a certain level utility. This is in stark contrast to

what was concluded by Ju, Leland, and Senbet (2014), who argue that managers always

prefer shares of stock in lieu of regular calls because regular call options make their portfolio

too risky. Under our framework, both options and stock are modeled as call options and, as

a result, the reasoning of Ju, Leland, and Senbet (2014) does not hold. Our results suggest

that there exists an optimal number of options and stock that minimizes the costs to the firm

and induces higher risk taking, and that this number should be adjusted as the underlying

investment technology changes over time (see Core and Guay 1999; Athanasakou, Ferreira,

and Goh 2022).

Consistent with Ju, Leland, and Senbet (2014), we find that lookback calls are, mostly,

more effective (in terms of risk incentives and total cost) than regular calls. However, the

argument of Ju, Leland, and Senbet (2014) that lookback calls create stronger risk incentives

than regular calls because their delta is always greater than 1 and, hence, greater than that

of a regular call (assuming no dividends) is inaccurate. We thus contribute to the literature

by shedding light on the delta effect of lookback and regular calls. In particular, we show

that the delta of a lookback call is not always greater than that of a regular call and that
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it is never greater than 1. Our results seem to suggest an idea completely opposed to that

advocated by Ju, Leland, and Senbet (2014): higher (resp., lower) delta is associated with

lower (resp., higher) risk taking. The economic rationale for this is simple: if the delta is

high, the executive needs to make less effort to achieve a given level of utility than if the

delta were low. As a result, higher delta induces lower risk taking. In this paper, we show

that lookback options might be less effective than regular calls when their delta is higher

than that of a regular call which, ultimately, contradicts the arguments of Ju, Leland, and

Senbet (2014).

We also find that, in general, Asian calls and power calls are more effective than regular

calls or lookback calls in inducing higher risk taking. Power options (with an appropriate

power coefficient) induce higher risk taking (and can even be more cost-effective) than look-

back or regular calls because an increase in firm volatility has a higher impact on the power

call than on the regular or lookback call. Note, however, that power options will induce

higher risk taking only if the manager is not too risk averse, the reason being that as the

manager gets more risk averse, she will become more concerned about the risk of her portfo-

lio and, as a result, might take more conservative investment decisions. Thus, despite their

usefulness, it is not always optimal to compensate managers with power calls because they

might induce too little or too much risk taking depending on manager’s risk aversion and

the overall structure of her portfolio. In addition, it is not straightforward (from a practical

point of view) to choose the power coefficient that will induce managers to choose riskier

(but positive NPV) projects.

Finally, we show that Asian calls are a superior remedy for alleviating the agency costs

of deviating from the optimal volatility level, because linking manager’s pay to average firm

value instead of firm value itself reduces the overall risk of her portfolio. As a result, she is

more willing to take investment decisions that optimize firm value. We thus argue that Asian

options provide the benefits of indexed options without their potential drawbacks (Dittmann,

Maug, and Spalt 2013). Moreover, Asian options make it less likely for managers to commit

fraud by manipulating stock price or taking advantage of inside information since the payoff
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is based on the average firm value over the life of the option instead of a single date as in

the case of power options, regular calls or lookback calls.3

The remainder of this work is organized as follows. Section 1 lays out our theoretical

framework. Section 2 presents a battery of numerical results to illustrate the effect that the

inclusion of debt as well as the consideration of non-traditional stock options in compensation

packages have on managerial risk choices. Section 3 presents some concluding remarks. All

accessory results are relegated to the Appendix and to an Internet Appendix.

1. Theoretical Model

In this section, we extend the model proposed by Ju, Leland, and Senbet (2014) in order to

incorporate debt in the firm’s capital structure.

1.1. Investment Technology

Assume a firm financed with debt, equity, and employee stock options, whose time-t value

is given by:

Vt(σ) = Dt(σ) + St(σ) +Xt(σ), (1)

where σ is the firm volatility chosen by the executive, Dt(σ) is the time-t market value of

debt, St(σ) is the time-tmarket value of stock andXt(σ) is the time-tmarket value of options.

For convenience, and following Ju, Leland, and Senbet (2014), we assume that the firm has

one share of stock outstanding with price St(σ) and one employee stock option outstanding

with price Xt(σ). We also assume that the option has exercise price K and maturity T . The

debt is a zero-coupon bond with face value F and maturity at time TD. The proceeds from

the exercise of the options are assumed to be reinvested in the company, thus increasing its

size. It is important to mention that employee stock options are corporate warrants because

3Note that even though the payoff of a lookback call option depends on the minimum firm value during
the life of the option, it is still less effective than an Asian call in reducing the management’s incentives to
fraudulent behaviors. This is because the manager holding a lookback call in her portfolio might still have
incentive to increase the terminal stock price so that her payoff is greater.
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exercising the options results in the firm issuing new shares of stock and receiving the strike

price. Therefore, when pricing employee stock options, the warrants’ analog can be applied.

In this paper, we closely follow Crouhy and Galai (1994) and Abnzano and Navas (2013)

to derive our model. The maturity of the options is assumed to be shorter than that of the

debt, i.e., T < TD. Thus, events that are expected to occur after the option expires, but

before the debt expiration date, can affect the level of volatility to be chosen today by the

executive. It is further assumed that there exists a benchmark firm (with value V ′) that

initially follows an identical investment policy, but is financed entirely by equity. Hence, for

0 ≤ t < T , we have that

V ′
t (σ) = Vt(σ). (2)

Following Ju, Leland, and Senbet (2014), we define the initial value of the leveraged firm

as

V0(σ) = V0 − a

(

σ − σ0

σ0

)2

, (3)

where V0 is the optimal firm value and ameasures the costliness of deviating from the optimal

volatility level, σ0. Note that

V0(σ) = D0(σ) + S0(σ) +X0(σ) = V0 − a

(

σ − σ0

σ0

)2

, (4)

where the functional forms of Dt(σ), St(σ) and Xt(σ) are derived in the subsequent subsec-

tions. Equation (4) shows that the choice of σ has impact on both equity, St(σ)+Xt(σ), and

debt, Dt(σ), which ultimately impacts V0(σ). This function has a maximum value V0(σ0) at

σ = σ0, representing the firm’s first best investment policy. In this case, the firm adopts all

positive NPV projects.
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1.2. Expected Return

Under the physical probability measure P and conditional to the current (time-t) σ-algebra,

the Capital Asset Pricing Model (CAPM) framework implies that

µV (σ)− r

µV (σ0)− r
=

Cov(µ̃V (σ), µ̃m)

Cov(µ̃V (σ0), µ̃m)
, (5)

where µV (σ) is the firm’s subjective expected return corresponding to σ, µ̃m is the random

return of the market, µ̃V (σ) is the (random) return corresponding to σ and r is the risk-free

rate. Assuming that the covariance is proportional to the risk level, σ, we get

µV (σ) = r +
σ

σ0

(µV (σ0)− r). (6)

The main motivation for this specification lies in the fact that, unlike the Black and Scholes

(1973) framework where investors can dynamically hedge their option positions, risk-averse

executives are, usually, not allowed to sell and hedge their options.

1.3. Firm Value Dynamics

The unleveraged firm value, for a given volatility level σ, is modeled (under the physical prob-

ability measure) as a time-homogeneous diffusion process solving the stochastic differential

equation
dV ′

t (σ)

V ′
t (σ)

= µV ′(σ)dt+ σdBV ′

t , (7)

where V ′
0(σ) is given by equation (3), µV ′(σ) is given by equation (6) and {BV ′

t , t ≥ 0} is

a standard Brownian motion. It is noteworthy to emphasize that µV ′ arises from the fact

that executives cannot trade their options and are restricted from taking actions such as

short-selling company securities or hedging company stock risk. At the same time, the value

of executive’s holdings in other companies is assumed to follow another diffusion process

given by
dOt

Ot

= µOdt+ σOdB
O
t , (8)
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where {BO
t , t ≥ 0} is another standard Brownian motion correlated with {BV ′

t , t ≥ 0}, i.e.,
d
〈

BV ′

t , BO
t

〉

= ρdt. When valuing St(σ) and Xt(σ) (i.e., the market value of firm contingent

claims), µV ′(σ) is replaced by the risk-free rate, i.e., a change of measure is made from the

original physical measure to the risk-neutral measure that takes as numeraire the money-

market account. The terminal values, under the physical measure, are given by

V ′
T (σ) = V ′

0(σ)e
(µV ′ (σ)−σ2

2
)T+σBV ′

T , (9)

OT = O0e
(µO−σ2

O
2

)T+σOBO
T . (10)

1.4. The Executive’s Terminal Wealth

Following Ju, Leland, and Senbet (2014), we assume that the executive has a risk-free in-

vestment I, holdings of shares of other companies O0, NS shares of company stock, and NX

call options with strike price K and maturity T in her portfolio. In order to obtain the

executive’s wealth, we need to take into account the terminal value of her company holdings

composed of shares of stock and call options. We recall that the proceeds from options ex-

ercise are reinvested in the company, hence increasing its size. Therefore, if the NX options

are not exercised, at maturity of the debt the value of the levered firm, VTD
, will be equal

to the value of the unlevered firm, V ′
TD

. On the other hand, if the NX options are exercised,

the amount NXK received from the exercise of the options is reinvested and the value of the

levered firm at TD becomes VTD
= V ′

TD

(

1 + NXK
V ′
T

)

. Thus, NXK/V ′
T simply measures the

scale expansion of the firm’s assets.

As shown by Crouhy and Galai (1994), the option should be exercised only if the post-

expiration value of the diluted share is greater than the strike price K. This is essentially

driven by the fact that the exercise of the options, which results in a scale expansion of the

firm, may reduce the probability of default and, consequently, increase the value of debt,
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which, in turn, causes a reduction in the share price. The post-expiration value of a share

of stock, ST (σ), can be written as follows

ST (σ) =











V ′
T (σ)−DNX

T (σ) ≡ SNX
T (σ) if options are not exercised

V ′
T (σ) +NXK −DX

T (σ)

1 +NX

≡ SX
T (σ) if options are exercised

, (11)

where DX
T (σ) and SX

T (σ), or DNX
T (σ) and SNX

T (σ), represent the value of debt and of a share

of stock at time T if options are exercised, and if options are not exercised, respectively.

Since SX
T (σ) is an increasing function of V ′

T (σ), we can find a value of the firm, V̄ ′
T , such that

SX
T (V̄ ′

T ) = K.

The time-TD value of a share of stock, STD
, is thus given by

STD
(σ) = (12)















max
(

V ′
TD

(σ)− F, 0
)

if options were not exercised at time T

max
[

V ′
TD

(σ) (1 +NX/V
′
T (σ))− F, 0

]

1 +NX

if options were exercised at time T

,

where V ′
T (σ) is given by equation (9) and V ′

TD
is given by

V ′
TD

= V ′
T (σ)e

(r−σ2

2
)(TD−T )+B̃V ′

TD ,

with {B̃V ′

t , t ≥ 0} being another standard Brownian motion. Note the change from the

physical probability measure to the risk-neutral probability measure in the last equation.

This is due to the fact that after the maturity of the option, the executives are allowed to

sell their shares of stock.
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Hence, and following Merton (1974), we can model the time-T value of the firm’s equity

as an option on VT with strike price F and time to maturity TD − T 4

ST (σ) =











cT (V
′
T (σ), F, TD) ⇐ V ′

T ≤ V̄ ′
T

cT (V
′
T (σ) +NXK,F, TD)

1 +NX

⇐ V ′
T > V̄ ′

T

, (13)

where ct(At(σ), K, T ) denotes the time-t value of a call option on A(σ), with strike K and

maturity at time T .

The time-t value of the executive company holdings is given by NSST (σ) + NXXT (σ),

where XT (σ) represents the terminal payoff of the option granted to the executive. The

executive’s terminal wealth is obtained as

WT = IerT +OT +NSST (σ) +NXXT (σ), (14)

which is dependent on the payoff structure of the chosen compensation scheme.

1.5. Regular Call Options

In this subsection, we assume that the executive has NX regular (or plain-vanilla) call options

in her portfolio. Therefore, the time-T value of the executive company holdings is given by

NSST (σ) +NX(S
X
T (σ)−K)+, (15)

and the executive terminal wealth follows from equation (14):

WT = IerT +OT +NSST (σ) +NX(S
X
T (σ)−K)+. (16)

The initial market values of the firm’s individual claims (stock and options) are necessary to

compute the total cost to the firm. In this sense, we assume that there exists an equivalent

4Note that equation (13) can also be obtained through equation (11) and the put-call parity.
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martingale measure Q under which the discounted firm value is a martingale. Thus, we can

write
dV ′

t

V ′
t

= rdt+ σdB̃V ′

t , (17)

and, using It’s lemma,

V ′
T (σ) = V ′

t (σ)e
(r−σ2

2
)(T−t)+σdB̃V ′

T

= V ′
t (σ)e

(r−σ2

2
)(T−t)+σy , (18)

where y ∼ N (0, T − t).5 Following Crouhy and Galai (1994) we can value the firm’s share

of stock at any time t (< T ) by discounting the expected value of its time-T price — given

in equation (13) — at the risk-free discount rate r:

St(σ) = e−r(T−t)EQ

[

cT (V
′
T (σ), F, TD)1{V ′

T
(σ)≤V̄ ′

T}

+
cT (V

′
T (σ) +NXK,F, TD)

1 +NX

1{V ′
T
(σ)>V̄ ′

T}
∣

∣

∣

∣

Ft

]

=
e−r(T−t)

√

2π(T − t)

(

∫ ȳ

−∞
cT (V

′
T (σ), F, TD)e

− y2

2(T−t)dy

+

∫ ∞

ȳ

cT (V
′
T (σ) +NXK,F, TD)

1 +NX

e−
y2

2(T−t)dy

)

, (19)

where EQ[R|Ft] denotes the (time-t) expected value of the random variable R, conditional

on time-t σ-algebra Ft and computed under the equivalent martingale measure Q, 1{B} is

the indicator function of event B, and

ȳ :=
ln(V̄ ′

T/V
′
t (σ))− (r − σ2

2
)(T − t)

σ
√
T − t

.

5The notation X ∼ N (µ, σ2) is meant to indicate that the random variable X possesses a univariate
normal law with mean µ ∈ R and variance σ2 ∈ R+.
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The value of the option at time t, with t < T , is given by

Xt(σ) =
e−r(T−t)

√

2π(T − t)

∫ ∞

ȳ

(

cT (V
′
T (σ) +NXK,F, TD)

1 +NX

−K

)

e−
y2

2(T−t)dy. (20)

Therefore, the total cost to the firm, at time 0, is obtained as

TC = a

(

σ − σ0

σ0

)2

+NSS0(σ) +NXX0(σ). (21)

1.6. Lookback Calls

We now assume that instead of regular calls, the executive holds NX floating-strike lookback

call options in her portfolio. It is noteworthy to mention that unlike the case of a pure-equity

firm where the payoff of the lookback call, VT − inf
0<u≤T

(Vu), is always non-negative and, as a

result, the option is always exercised, in the case of a levered firm, it might not be optimal to

exercise the lookback call even when VT − inf
0<u≤T

(Vu) > 0. This is due to the discontinuity in

price caused by the increase in the value of the debt, discussed in the previous subsections.

The value of executive company holdings is now defined as

NSST (σ) +NX(S
X
T (σ)− V ′min

T )+, (22)

where V ′min
T := inf

0<u≤T
(V ′

u) is the minimum firm value during the life of the option and SX
T (σ)

is the post-expiration value of a share of stock if the options are exercised, and is defined as

SX
T (σ) =

cT (V
′
T (σ) +NXV

′min
T , F, TD)

1 +NX

. (23)

Note that unlike the case of a regular call where the firm receives NXK from the option

exercise, in this case, the firm receives V ′min
T and immediately reinvests it.
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Assuming now that V ′
T = V0(σ)e

ZT , where ZT is a drifted Brownian motion given by

ZT = (r − σ2

2
)T + σB̃V ′

T , the initial value of the firm’s share of stock is equal to

S0(σ) = e−rTEQ

[

cT (V
′
T (σ), F, TD)1{SX

T
≤V ′min

T
} (24)

+
cT (V

′
T (σ) +NXV

′min
T , F, TD)

1 +NX

1{SX
T
>V ′min

T
}

∣

∣

∣
Ft

]

= e−rT

∫ ∞

−∞

∫ min(z,0)

−∞
cT (V0(σ)e

z, F, TD)1{SX
T
≤V0(σ)em}

+
cT (V0(σ)e

z +NXV0(σ)e
m, F, TD)

1 +NX

1{SX
T
>V0(σ)em}f(z,m)dmdz, (25)

where

SX
T =

cT (V0(σ)e
z +NXV0(σ)e

m, F, TD)

1 +NX

, (26)

and f(z,m) is the joint density of the Brownian motion z and its minimum m (see, for

instance, Campolieti and Makarov 2014, Section 10.4) given by

f(z,m) =
2(z − 2m)

(T − t)σ2
√

2πσ2(T − t)
e

αz

σ2−
α2(T−t)

2σ2 − 1
2

(

z−2m
σ
√

T−t

)2

, (27)

with α = r−σ2/2. The time-0 value of the option, under the risk-neutral probability measure

Q, is given by

X0(σ) = e−rT

∫ ∞

∞

∫ min(z,0)

−∞

(

cT (V0(σ)e
z +NXV0(σ)e

m, F, TD)

1 +NX

− V0(σ)e
m

)+

(28)

× f(z,m)dmdz.

1.7. Asian Calls

Using a comparative statics analysis, Tian (2013) argues that Asian call options with geo-

metric averaging are more cost-effective than traditional stock options and provide stronger

incentives to increase stock price. However, as Ju, Leland, and Senbet (2014) put it, this

type of comparative statics holds all other variables constant and ignores the impact of the

change of the stock price on the firm value. Our analysis is different from that of Tian (2013)
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in the sense that we are particularly interested in the risk incentives related to distortions in

firm value. For simplicity, we use V ′
T and V ′

T (σ) interchangeably. The Asian option has payoff

(V̂ ′
T−K)+, where V̂ ′

T denotes the geometric average of the firm value from time zero to time T

assuming that the firm value is observed at discrete dates t1, t2, . . . , tn: V̂
′
T :=

[
∏n

i=1 V
′
ti

]
1
n .6

For the sake of convenience, we use the limiting case where the firm value is continuously

monitored and the geometric average is defined as

V̂ ′
T := e

1
T

∫ T

0
lnV ′

t dt

= elog V
′
0(σ)+(µV ′−σ2

2
)T
2
+ σ

T

∫ T

0 BV ′
t dt (29)

= V ′
0(σ)e

1
2
(µV ′−σ2

2
)T+ σ√

3

√
Tx
,

where x ∼ N (0, 1). The last line of equation (29) follows from It’s lemma and the fact

that
∫ t

0
BV ′

t dt =
∫ t

0
(t − s)dBV ′

s ∼ N
(

0, t3

3

)

— see, for instance, Shreve (2004, page 149).

Thus, it is easy to see that the average firm value follows, under the physical measure, a

geometric Brownian motion but with different drift and volatility parameters (Kemna and

Vorst, 1990):

dV̂ ′
t

V̂ ′
t

=
1

2

(

µV ′(σ)− 1

6
σ2

)

dt+
σ√
3
dB̂V ′

t , (30)

where {B̂V ′

t , t ≥ 0} is another standard Brownian motion. Note that V̂ ′
0(σ) = V ′

0(σ) by

definition. Thus, if a tracking asset were issued to mimic the performance of the average

firm value, its price would be identical to the firm’s initial value but has lower volatility and

grows at a lower rate than the firm value does (Tian, 2013): 1
2

(

µV (σ)− 1
6
σ2
)

< µV (σ). This

has important implications in the risk incentives provided by Asian options when compared

with other types of options, as we discuss in the next section. The value of executive company

holdings is thus defined as

NSST (σ) +NX

(

V̂ ′
T −K

)+

. (31)

6Similar to Tian (2013), we consider geometric average in lieu of arithmetic average because the former
penalizesmean preserving spreads while the latter does not. As a result, a better alignment between managers
and shareholders is achieved since they both prefer steady growth to volatile swings.
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As in the previous subsections, the risk-neutral value of St (t < T ) is given by

St(σ) =
e−r(T−t)

2π
√
T − t

∫ ∞

−∞

∫ ∞

−∞

(

cT (V
′
T (σ), F, TD)1{V̂ ′

T
≤K} (32)

+
cT (V

′
T (σ) +NXK,F, TD)

1 +NX

1{V̂ ′
T
>K}

)

e
− 1

2

(

y2

T−t
−x2

)

dxdy,

where V ′
T (σ) and V̂ ′

T are given by equations (18) and (29), respectively. A closed-form

solution for the time-t price of an Asian call option with geometric averaging is available in

the literature (Kemna and Vorst, 1990) and is given by

Xt(σ) = V ′
t (σ)e

−q̂(T−t)N (d1)−Ke−r(T−t)N (d2), (33)

where

q̂ =
1

2

(

r +
1

6
σ2

)

, (34)

σ̂ =
σ√
3
,

d1 =
log(V ′

t (σ)/K) + (r − q̂ + 1
2
σ̂2)(T − t)

σ̂
√
T − t

,

and

d2 = d1 − σ̂
√
T − t.

1.8. Power Options

Based on the findings of Tian (2013) regarding linking executive’s incentives to average stock

price, Bernard, Boyle, and Chen (2016) propose the so-called power options and show them to

be cheaper and with higher subjective value than Asian options. The power option proposed

by the authors has the same distribution as the continuously monitored Asian option with
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geometric averaging. Unlike Bernard, Boyle, and Chen (2016), we do not initially specify a

value for the power coefficient.

Consider the following power option with time-T payoff

XT (σ) = Ψ

[

(SX
T (σ))ϕ − K

Ψ

]+

, (35)

where ϕ ∈ R+ is a constant and

Ψ := (V ′
0(σ))

1−ϕ
e(

1
2
−ϕ)(µV ′−σ2

2
)T .

From expression (35), one can see that when ϕ > 1 (resp., ϕ < 1), an increase in firm

volatility, σ, has a higher (resp., lower) impact on the power call option than on the regular

one. Therefore, if the manager is not too risk averse, a power call with ϕ > 1 can incentivize

her to take higher risk in order to increase the value of her option stake. Note, however, that

in order for the payoff of the power call to be greater than that of a regular call, ϕ has to

be not only greater than 1, but also sufficiently large in order to compensate the decrease in

(V ′
0(σ))

1−ϕ as a result of higher ϕ. By contrast, if the manager has a substantial degree of

risk aversion, power calls with ϕ > 1 might induce less risk taking than regular calls because

as her portfolio gets riskier, she will adopt more conservative investment decisions in order

to reduce its risk.

We thus argue that it is not always optimal to compensate managers with power options

because, depending on the manager’s risk aversion and the structure of her portfolio, this

type of options can induce managers to take excessively risky investments, which is hurtful

to both bondholders and shareholders. Note that the risk-neutral value of the stock and

option can be determined in a similar manner as in the case of the regular call.
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1.9. Optimal Corporate Risk Policy

Consistent with prior research, we assume that the executive is risk averse and has constant

relative risk aversion specified by the power utility function

U(WT ) =











W 1−Λ
T

1 − Λ
, if Λ 6= 1

lnWT , otherwise

, (36)

where Λ > 0 is a measure of risk aversion, usually called the coefficient of relative risk

aversion: a larger Λ indicates a higher degree of risk aversion. The ultimate goal of the

executive is to choose a volatility level σ that maximizes her expected utility

max
σ

EP

[

U
(

IerT +OT +NSST (σ) +NXXT

)
∣

∣F0

]

, (37)

where ST (σ) is defined in the last subsections and OT is given by equation (10).

There are a few points that are noteworthy to emphasize from equation (37). First, if

the financing decision has no effect on the total value of the firm, lower leverage is associated

with higher expected utility. Our framework nests the Ju, Leland, and Senbet (2014) model

as special case when F = 0. Second, the volatility level σ affects ST (σ) because more

volatile returns increase the value of equity holders’ call option, which reduces the value of

debt. Therefore, the interests of debt and equity conflict. Equity holders prefer higher firm

volatility, which raises the value of their long call; debtholders prefer lower firm volatility,

which increases the value of their short call (Anderson and Core 2017). In this sense, as

long as the increase in firm volatility is associated with a more than sufficient increase in

expected return to compensate for the increase in uncertainty, the executive will endeavor

to increase firm volatility in order to increase the value of her equity stake and the value of

her call option on equity.

Also note that since the exercise of the options decreases the value of a share of stock and

increases the value of debt, the manager might try to drive the volatility down so that her

option is not exercised and the value of her equity stake is greater. However, the decrease in
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volatility also affects (more specifically, decreases) the equity value. Moreover, given that the

manager is risk averse, she will simultaneously prefer a less volatile distribution of returns.

The optimal σ is, thus, the result of the interaction among all these effects. Third, σ affects

the expected utility more directly through its effect on V0(σ).

2. Numerical Results

This section presents some numerical illustrations. For this purpose, we adopt the param-

eters configuration of Ju, Leland, and Senbet (2014), but augmented by TD and F . More

specifically, we consider the following base values: a = 50, V0 = 100, r = 5%, σ0 = 0.38,

µV (σ0) − r = 7%, σO = 0.2, ρ = 0.2, µO = 12%, Λ = 2, NCW0 = 0.32, fNC = 0.8, T = 5,

NS = 0.32%, NX = 0.38%, F = 60, K = V0(σ) and TD = 7. NCW0 denotes the executive’s

initial non-company wealth and fNC is the fraction of NCW0 invested in other companies.

Table 1 illustrates the incentive effects of regular calls. For completeness, we also report the

results for executives in an unlevered firm in an Internet Appendix.7

[Please insert Table 1 about here.]

The volatility chosen is now much higher than that of an unlevered firm for all the parameter

constellations, suggesting that debt helps to reduce the agency costs of deviating from the

optimal volatility level. The reason is simple. Recall that Vt(σ) = Xt(σ) + St(σ) + Dt(σ).

Therefore, keeping the firm value constant, the higher the leverage (Dt(σ)), the lower the

value of equity (Xt(σ) + St(σ)). As a result, a higher volatility is required to maximize St

and to ensure that the option has a non-negligible probability of finishing in the money.

Thus, debt induces some risk-shifting incentives for managers. Nonetheless, until a certain

point, risk shifting incentives do not hurt bondholders since the manager is taking actions

7We recall that these results (collected in Appendixes B and C) are obtained using the unlevered case
considered in Ju, Leland, and Senbet (2014). Eventual tiny differences are justified by the fact that the codes
in Ju, Leland, and Senbet (2014) were written in Fortran and called IMSL Fortran library routines for doing
the integration and minimization, while our codes were written in MATLAB and called the corresponding
built-in functions for doing integration and minimization.
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to optimize the overall value of the firm. Some caution is needed however. Implicit in our

assumptions is the fact that V0(σ) is not the only possible firm value for the risk level σ,

but happens to be the highest among different investment policies (Ju, Leland, and Senbet

2014). If the manager adopts any one of many possible investment policies that result in

lower firm values for the same risk level, the risk-shifting incentives can, in fact, be hurtful

to bondholders. In this connection, tying manager’s compensation to the firm’s performance

is important in order to reduce these problems. Our results are not consistent with those of

Kim, Patro, and Pereira (2017), who argue that high leverage is likely to dampen the impact

of risk-increasing incentives provided to the manager, but agree with those of Coles, Daniel,

and Naveen (2006), Dong, Wang, and Xie (2010) and Chava and Purnanandam (2010).

2.1. Effect of Risk-Aversion

As in the case of an unlevered firm (see Ju, Leland, and Senbet 2014), the risk-neutral (i.e.,

Λ = 0) manager chooses a volatility level (58.2%) higher than the firm maximizing one

(38.0%). This is already well understood in the literature and has a simple explanation.

The first order derivative of V0(σ) at σ0 is zero, but that of the expected payoff is positive.

Thus, the effect of the option dominates the decline of V0(σ) for σ near σ0. Conversely, as

Λ increases, the manager becomes more risk-averse and ends up adopting safer investments.

To further illustrate the effect of leverage in managerial risk choices, Figure 1 depicts the

volatility chosen by the risk averse manager assuming different values for the parameter Λ.

[Please insert Figure 1 about here.]

As expected, the higher the manager’s aversion to risk, the lower the volatility she chooses

regardless of the level of leverage. Figure 1 also shows that the relation between leverage

and manager’s risk choices is non-monotonic (especially for extremely risk averse managers,

i.e., Λ = 5 and Λ = 7). It appears that moderate values of F (about 50) are the initial

points at which leverage starts to induce high risk taking. Below that level, the choice of

risk depends on the manager’s risk aversion. If the manager is extremely risk averse (e.g.,
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Λ = 7), increasing leverage induces higher risk taking until a certain point (about 20), but

after that level, leverage induces even lower risk taking. On the other hand, if the manager is

not too risk averse (e.g., Λ = 2), she slowly increases volatility until the foregoing threshold

(i.e., until about 50). Appendix D of the Internet Appendix presents two figures similar to

Figure 1 but now with r = 0% and r = 10%, respectively. The results are qualitatively the

same.

2.2. Effect of Investment Technology

Following Ju, Leland, and Senbet (2014), we define the agency cost as the deviation of the

firm value, V0(σ), from the optimal firm value, V0(σ0), that is: a
(

σ−σ0

σ0

)2

. From Table 1, the

agency costs for a ∈ {10, 30, 50, 70, 90} are 1.117, 1.264, 1.125, 0.939 and 0.853, respectively.

Thus, the results are qualitatively similar to the ones reported in Ju, Leland, and Senbet

(2014), i.e., for the set of parameters considered, it appears that the agency cost is stronger

for moderate values of a. However, the agency cost is now smaller, as expected, and is

negatively correlated with leverage until a certain threshold of F . After that threshold,

the agency costs tends to increase with leverage. The results indicate that there exists a

particular value of F such that the manager will choose the optimal volatility level (0.38)

and the firm value will be equal to the optimal firm value. Figure 2 depicts these results.

[Please insert Figure 2 about here.]

Figure 2 shows that as leverage increases, the agency costs of deviating from the optimal

volatility level decrease until the point where the optimal volatility level σ0 = 0.38 is reached.

After that level, further increase in leverage increases the agency costs. Consistent with what

we mentioned previously, Figure 2 shows that the agency cost is higher for moderate values

of a, i.e., a = 30 and a = 50. Appendix E of the Internet Appendix presents two figures

similar to Figure 2 but now with r = 0% and r = 10%. The results are, in general, similar

to the ones presented in Figure 2, except that now, lower leverage (if r = 0%) or higher

leverage (if r = 10%) is required to achieve the optimal volatility level.
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2.3. Effect of Increasing the Portion of Call Option, or Company

Shares or Non-Company Shares

Similar to the manager of the unlevered firm, the risk-averse manager of the levered firm

appears to take lower risk as the call option portion in her portfolio increases. The reason

lies in the fact that as the portion of options in her portfolio increases, her portfolio becomes

riskier and, hence, she may reduce the risk level of the firm to reduce her portfolio risk.

However, unlike the manager of the unlevered firm, the volatility chosen by the risk-averse

manager of the levered firm does not change much for different portions of call options. The

reason is that the introduction of debt in the firm’s capital structure induces the manager

to take higher risk. Thus, leverage dampens the manager’s willingness to decrease firm

volatility even when the portion of call options in her portfolio becomes large.

The effect of increasing the company stock component in a manager’s portfolio is interest-

ing for several reasons. First, when no company stock is granted to the manager (NS = 0.0%),

she chooses a volatility level, σ, of 0.45, which is above the firm maximizing one. This is

because the option effect dominates the risk aversion of the manager. Second, as the portion

of company stock in a manager’s portfolio increases, she adopts safer investments. Strik-

ingly, she seems to adopt much safer investment policies when the portion of company shares

increases than when the portion of call options in her portfolio rises. This is because after a

certain degree of leverage, the sensitivity of debt to firm volatility grows more negative and,

as this happens, the stock sensitivity to volatility tends to increase in order to offset losses to

options with gains against the debt (see Anderson and Core 2017). As a consequence of this,

the manager takes more conservative investment decisions in order to reduce her portfolio’s

risk. Similar to the manager of an unlevered firm, the manager chooses lower risk levels as

the portion of her non-company wealth in shares of other companies increases.
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2.4. Effect of Strike Price

Table 1 indicates that even though the resulting σ’s are below the firm maximizing one,

σ0, they are substantially higher than that of an unlevered firm for different strike levels.

Nonetheless, the volatility chosen by the managers of both firms (i.e., levered and unlevered

firms) is positively correlated with the level of the strike price, i.e., the higher the strike

price, the higher the risk the manager takes. This is because a high strike price makes the

option (deep) out of the money and, thus, a high volatility is required in order to ensure

that the option finishes in the money. This is consistent with Tian (2004) who finds that

premium options provide higher (systematic) risk incentives than discount options.

2.5. Effect of Diversification

As Ju, Leland, and Senbet (2014) put it, if the relative portion of executive’s company

holdings (stock and call options) is small in the manager’s portfolio (i.e., large NCW0), the

manager has incentives to adopt riskier investments in order to maximize her call option

payoff, since she is not too worried whether the options will finish out of the money. It

is important to note, however, that very high NCW0 will induce the manager to take risk

above the firm maximizing one. The results are more severe in the case of levered firms

since, in this case, the managers take higher risk. As for fNC , results in Table 1 suggest that

a significant flat fee induces managers to take higher risk, given that lower fNC corresponds

to higher portion of investments on risk-free assets.

2.6. Expected Utility, Utility and Pay-Performance Sensitivities

with Respect to the Firm Value

Still considering the results highlighted in Table 1, column 6 reports the expected utility,

column 7 presents the partial derivative of the expected utility with respect to the firm value

(utility sensitivity) and column 8 depicts the partial derivative of the certainty equivalent

of the manager’s wealth with respect to the firm value (pay-performance sensitivity). As
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expected, the introduction of debt decreases the expected utility, increases utility sensitivity

and decreases the pay-performance sensitivity for the set of parameters considered. The

reason of the lower utility for a risk-averse manager in a levered firm stems directly from

the decrease in the value of equity caused by debt issuance. Given that strict alignment of

manager compensation with shareholder interest is optimal for all-equity firms and should be

lower for levered firms, the utility sensitivity for a risk-averse manager in a levered firm will

be higher than that of a manager in an unlevered firm, reaching its nadir in the limiting case

when F → 0 (i.e., as the firm becomes unlevered). This is due to the concavity of the power

utility function. Finally, as debt increases, the pay-performance sensitivity should optimally

decline because with larger debt and increased risk-shifting incentives, the management

compensation structure plays a larger “precommitment role” and smaller “alignment with

shareholders” role (John and John, 1993).

2.7. Minimizing the Total Cost to the Firm

We now examine the optimal mix of stock-based components of the compensation that

minimizes the total cost, defined in equation (21), while preserving the manager’s utility

obtained in Table 1. Table 2 contains the numerical results.

[Please insert Table 2 about here.]

Table 2 shows that, for most cases, it is more efficient to use a combination of company

shares and regular options to achieve a given level of utility for the manager of a levered

firm. This is in stark contrast with the case of the unlevered firm of Ju, Leland, and Senbet

(2014), where it is more cost-effective to use only company shares.

2.8. The Impact of Lookback Calls on the Investment Risk Choice

Ju, Leland, and Senbet (2014) argue that lookback calls are more effective than regular

calls in reducing the agency costs of deviating from the optimal risk level. According to the
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authors, this is because unlike regular calls, lookback calls are always in the money and thus

the manager is willing to take higher and more desirable risk. In this paper, we analyze the

incentives provided by lookback calls in a new (and more realistic) setting where the firm is

financed with both equity and debt. Table 3 reports the results.

[Please insert Table 3 about here.]

The number of lookback calls is chosen to yield the same utility level as each corresponding

entry in Table 1. Our results are quantitatively higher than those of Ju, Leland, and Senbet

(2014), but qualitatively similar. That is, lookback calls are more effective in reducing the

agency costs of deviating from the optimal volatility level in most of the cases. Table 3

also shows that, except for a few cases, the total cost to the firm is substantially lower

when lookback calls are used in lieu of regular calls. However, neither lookback calls nor

regular calls should be used when the firm is overleveraged or when the manager holds a

significant portion of non-company wealth because they induce managers to take excessively

risky investments.

Given that lookback calls are always in the money before maturity, intuition suggests that

they should entail more risk taking than regular calls. Interestingly, and as noted by Ju,

Leland, and Senbet (2014) for a pure-equity firm, the entries of Tables 1 and 3 corresponding

to different Λ’s indicate that when regular calls induce too little risk taking (Λ = 4), lookback

calls induce more, and when regular calls induce too much risk taking (Λ = 0) lookback calls

induce less. Ju, Leland, and Senbet (2014) argue that this is because the delta of a lookback

call is always greater than that of a regular call. In fact, they argue that the delta of a

lookback call is always greater than 1. We contend that the authors are mistaken in this

argument, i.e., the delta of a lookback call is never greater than 1 and, similarly, the delta

of a lookback call is not always greater than that of a regular call. Appendix A proves that

the delta of a lookback call is never greater than 1. Meanwhile, we show that the delta of a

lookback call is not always greater than that of a regular call by computing it numerically.

Table 4 illustrates the results.

[Please insert Table 4 about here.]
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The results show that, for the set of parameters studied in this paper, the delta of the

regular call is greater than that of a lookback call except when the regular call is deep out

of the money. These results are in stark contrast with the ones reported by Ju, Leland, and

Senbet (2014), who argue that risk-averse (resp., risk-neutral) managers take higher (resp.,

lower) risk when compensated with lookback options because the delta of a lookback call

is always greater than that of a regular call. These puzzling results seem to suggest that

lower (resp., higher) option delta induces risk averse managers to take higher (resp., lower)

risk. The reason for this is that if the delta of the option is low, the executive needs to make

more effort to achieve a given level of utility than if the delta were high. Similarly, options

with higher delta induce risk-neutral managers to take higher risk because they are not too

worried that their portfolio becomes too risky. Thus, from Table 4, as the regular call option

becomes very deep out of the money, they will induce managers to take higher risk than

lookback calls. To confirm this result, Table 5 and Figure 3 illustrate the volatility chosen

by the risk averse manager for different strike levels when compensated with regular calls or

with lookback calls, both for levered and unlevered firms.

[Please insert Table 5 about here.]

[Please insert Figure 3 about here.]

According to the results from Table 5 and Figure 3, since the delta of lookback calls is greater

than that of a deep out of the money regular call, managers compensated with lookback calls

take slightly less risk than those compensated with regular premium options.

2.9. The Impact of Asian Calls on the Investment Risk Choice

As discussed in Subsection 1.7, the average value of the firm’s assets has lower volatility and

grows at a lower rate than the firm’s asset value. This has several implications, pointed out

in Tian (2013). First, an increase in firm volatility would reduce the expected return of the

tracking asset. Second, the average firm value has lower volatility, (σ/
√
3), than the firm

value, approximately 42.26%. This means that a risk-averse manager may prefer to have her
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incentive pay tied to the average firm value since it makes her portfolio less risky. Table 6

illustrates the numerical results.

[Please insert Table 6 about here.]

The results indicate that Asian calls are more effective than either regular or lookback calls

in inducing managers to take higher risk. Interestingly, when both Asian and lookback calls

induce risk taking above the firm maximizing one, the latter usually incentivize managers

to adopt riskier investment policies than the former. On the other hand, when both options

induce risk taking below the optimal one, managers with Asian options in their portfolio

usually adopt riskier investment policies than those compensated with lookback calls. This

is a puzzling result given that the delta of Asian calls is greater than that of lookback calls

in various cases (not reported) and, thus, the reasoning used in the last subsection regarding

the delta of a lookback call cannot be applied here.

However, we can appreciate these results using the fact that the average value of the firm’s

assets has lower volatility than the firm’s asset value itself, as discussed earlier. This means

that changes in firm volatility have a larger effect on lookback calls than on Asian calls. To

put it another way, lookback calls are more sensitive to volatility swings than Asian calls.

In this regard, managers compensated with Asian options have higher incentives to increase

firm risk because their portfolios are less risky than those of managers compensated with

lookback or regular calls. Therefore, when σ is below σ0, Asian call holders have preference

for higher σ since this results in higher firm and option value. On the other hand, when

σ is above σ0, Asian call holders prefer lower σ because the increase in firm risk (which

results in lower firm value) is not associated with a proportional increase in option value.

Strikingly, in some cases, even though Asian calls induce higher risk taking, lookback calls

are more cost effective. One could ask how is that possible given that the risk-neutral value

of Asian calls is lower than that of lookback calls. The reason for this lies in the fact that

in those particular cases, the increase (in relative terms) in stock price is higher than both
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the increase in firm volatility and decrease in option value when managers are compensated

with Asian calls.8

2.10. The Impact of Power Options on the Investment Risk Choice

Hitherto, we have shown that Asian calls are the most effective ones in inducing managers

to take higher risk. We now address the incentives provided by another type of option, the

power option. Table 7 illustrates the results.

[Please insert Table 7 about here.]

In our analysis, we use a power coefficient of ϕ = 3/2. The results indicate that in several

cases, power options induce higher risk taking and are more cost-effective than lookback

or regular calls. When comparing power options to Asian options, the results are mixed.

Both induce a similar level of risk taking, especially when σ is below σ0. When σ is above

σ0, power options induce much higher risk taking than Asian calls. Thus, depending on

the power coefficient, it might not always be optimal to compensate managers with these

options because, in general, they might induce excessive risk taking. In this connection, we

argue that if the power coefficient is greater than 1 and the manager is not too risk averse,

power options should be granted only in the cases where the current firm volatility is not

very close to the optimal one from below. Moreover, power options might not be easy to

apply in practice because it is not straightforward to determine the power coefficient that

will induce managers to adopt risky, positive NPV, projects that optimize the firm value,

since this depends on several factors such as risk aversion, leverage, and the overall structure

of the manager’s portfolio. That being said, Asian options appear to be the most suitable

choice to incentivize managers to take higher risk.

8Note that, depending on the minimum of the firm value during the life of the option, when managers
are compensated with lookback calls, the share of stock might have lower value than when managers are
compensated with Asian calls. This is because, in this case, the probability of the stock price finishing above
its minimum (which results in dilution and reduction of the share price) is higher than the probability of the
average value finishing above K.
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3. Concluding remarks

This paper is concerned with the risk incentives provided by traditional and non-traditional

stock options in a more realistic setting where the firm is financed with both equity (stock

and options) and debt. We show that a moderate degree of leverage and equity-based

compensation can be effective in incentivizing risk averse managers to adopt risky but positive

NPV projects. These results seem to suggest that some degree of risk-shifting does necessarily

hurt bondholders since the manager is endeavoring to optimize the firm value. Contrary to

what was concluded by Ju, Leland, and Senbet (2014) for an unlevered firm, we find that

managers usually prefer a combination of company shares and regular call options as part

of their compensation package in order to obtain a certain level of utility.

We show that lookback call options are, in general, more effective than regular calls but

fall short of power calls and Asian calls in most cases. Power calls sometimes induce excessive

risk taking, and it is not easy to choose a power coefficient that will induce managers to adopt

investment policies that optimize the firm value. In this regard, we argue that Asian calls

are a superior remedy to alleviate the agency costs of deviating from the optimal volatility

level. As opposed to what has been asserted in the literature (see Ju, Leland, and Senbet

2014), we document that the delta of a lookback call is not always greater than that of the

regular call. This conclusion has important implications on the interpretation about the role

of delta in inducing managers to optimize the firm value. In particular, we show that, ceteris

paribus, when the delta of the option is low (resp., high), managers have greater (resp., lower)

incentives to change the firm’s risk towards the optimal level.
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Appendix A. Delta of a Lookback Call

We prove that the delta of a lookback call is not greater than 1, in opposition to what was

argued by Ju, Leland, and Senbet (2014). As usual, we assume no dividends and that the

underlying asset price dynamics follows, under measure Q, the geometric Brownian motion

dSt

St

= rdt+ σdBt, (A.1)

where r is the risk-free interest rate, σ ∈ R+ is a constant and {Bt, t ≥ 0} is a standard

Brownian motion. Let mT
t = inf

t≤u≤T
(Su) be the minimum price during the time-interval [t, T ].

The terminal payoff of a lookback call is ST −mT
0 . The price of a lookback call at time t is

obtained as the discounted risk-neutral expectation of the terminal payoff:

CLC(St) = e−r(T−t)EQ

[

ST −mT
0

∣

∣Ft

]

= St − e−r(T−t)EQ

[

min(mt
0, m

T
t )
∣

∣Ft

]

, (A.2)

where Q denotes the risk-neutral measure. Let f(x) and F (x) be the risk-neutral density and

cumulative density, respectively, of the minimum price during [t, T ] for the process (A.1).

Thus, we can write

CLC(St) = St − e−r(T−t)

∫ mt
0

0

xf(x)dx− e−r(T−t)mt
0

∫ St

mt
0

f(x)dx. (A.3)

Now, if we change the price at t from St to St + ǫSt, for ǫ ∈ R, the terminal price will be

(1 + ǫ)ST and the minimum during [t, T ] will be (1 + ǫ)mT
t . We thus have that the lookback

call price is

CLC(St + ǫSt) = St(1 + ǫ)− e−r(T−t)EQ

[

min
(

mt
0, m

T
t (1 + ǫ)

)
∣

∣Ft

]

(A.4)

= St(1 + ǫ)− (1 + ǫ)e−r(T−t)EQ

[

min

(

mt
0

1 + ǫ
,mT

t

)
∣

∣

∣

∣

Ft

]

,
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i.e.,

CLC(St + ǫSt) = St(1 + ǫ)− (1 + ǫ)e−r(T−t)

∫

mt
0

1+ǫ

0

xf(x)dx (A.5)

− (1 + ǫ)e−r(T−t)mt
0

∫ St

mt
0

1+ǫ

f(x)dx.

From equations (A.3) and (A.5), the change of the lookback call price is given by

CLC(St + ǫSt)− CLC(St) = ǫSt + e−r(T−t)

∫ mt
0

mt
0

1+ǫ

xf(x)dx− ǫe−r(T−t)

∫

mt
0

1+ǫ

0

xf(x)dx (A.6)

− e−r(T−t)mt
0

∫ mt
0

mt
0

1+ǫ

f(x)dx− ǫe−r(T−t)mt
0

∫ St

mt
0

1+ǫ

f(x)dx.

The delta of the lookback call is thus equal to

∆ = lim
ǫ→0

CLC(St + ǫSt)− CLC(St)

ǫSt

= 1 + lim
ǫ→0

e−r(T−t)

ǫSt

∫ mt
0

mt
0

1+ǫ

(x−mt
0)f(x)dx− lim

ǫ→0

e−r(T−t)

St

∫

mt
0

1+ǫ

0

xf(x)dx

− e−r(T−t)

St

mt
0 lim
ǫ→0

∫ St

mt
0

1+ǫ

f(x)dx

= 1 +
e−r(T−t)

St

lim
ǫ→0





(

mt
0

1+ǫ
−mt

0

)

f
(

mt
0

1+ε

)

mt
0

(1 + ǫ)2





− e−r(T−t)

St

[

mt
0F (mt

0)−
∫ mt

0

0

F (x)dx+mt
0F (St)−mt

0F (mt
0)

]

= 1− e−r(T−t)

St

[

mt
0F (mt

0)−
∫ mt

0

0

F (x)dx+mt
0

(

F (St)− F (mt
0)
)

]

. (A.7)

Given that mt
0F (mt

0) =
∫ mt

0

0
F (mt

0)dx ≥
∫ mt

0

0
F (x)dx for all x ∈ [0, mt

0] and F (St) ≥ F (mt
0)

(because F (.) is non-decreasing and St ≥ mt
0), ∆ < 1. �
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Table 1: Risk effects of compensation contracts with regular calls in a
levered firm

σ V0(σ) VC TC EP[U(WT )] 103 ∂EP[U ]
∂V

103PPS

Base 0.323 98.888 19.809 1.382 -1.3054 6.517 3.825

Λ = 0 0.582 85.936 32.843 14.382 1.4276 12.030 12.030

Λ = 4 0.222 91.367 9.471 8.831 -1.4656 23.756 3.298

a = 10 0.253 98.875 13.936 1.366 -1.2916 7.355 4.409

a = 30 0.302 98.730 17.988 1.531 -1.3013 6.775 4.001

a = 70 0.336 99.040 20.854 1.236 -1.3076 6.372 3.727

a = 90 0.343 99.161 21.531 1.120 -1.3091 6.280 3.665

NX = 0.0% 0.319 98.724 19.497 1.470 -1.3730 6.425 3.408

NX = 0.2% 0.323 98.878 19.818 1.357 -1.3323 6.475 3.648

NX = 0.5% 0.323 98.872 19.746 1.421 -1.2908 6.543 3.927

NX = 1.0% 0.320 98.753 19.368 1.634 -1.2465 6.625 4.264

NS = 0.0% 0.450 98.286 29.602 1.826 -1.7378 2.575 0.853

NS = 0.2% 0.350 99.678 22.223 0.531 -1.4334 5.536 2.694

NS = 0.5% 0.298 97.667 17.324 2.694 -1.1586 7.450 5.550

NS = 1.0% 0.260 94.977 13.397 5.625 -0.9009 8.550 10.535

fNC = 0.0 0.327 99.021 20.139 1.251 -1.4340 7.610 3.701

fNC = 0.5 0.327 99.036 20.178 1.237 -1.3286 6.619 3.750

fNC = 1.0 0.319 98.698 19.364 1.569 -1.3040 6.633 3.901

K = 0.5V0(σ) 0.301 97.861 33.149 2.455 -1.2352 7.171 4.700

K = 0.8V0(σ) 0.317 98.622 24.741 1.665 -1.2841 6.695 4.060

K = 1.2V0(σ) 0.327 99.043 15.292 1.211 -1.3209 6.407 3.672

K = 1.5V0(σ) 0.331 99.155 9.198 1.077 -1.3371 6.321 3.536

NCW0 = 0.2 0.297 97.600 17.208 2.653 -1.8126 12.011 3.656

NCW0 = 0.5 0.349 99.671 22.193 0.614 -0.9317 3.527 4.063

NCW0 = 1.0 0.389 99.972 25.515 0.331 -0.5295 1.290 4.600

Continued on the next page
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σ V0(σ) VC TC EP[U(WT )] 103 ∂EP[U ]
∂V

103PPS

F = 0 0.270 95.848 32.349 4.581 -0.9812 4.707 4.889

F = 10 0.275 96.158 29.175 4.237 -1.0329 5.173 4.849

F = 30 0.284 96.807 23.783 3.527 -1.1437 6.089 4.655

F = 50 0.309 98.264 20.873 2.024 -1.2279 6.270 4.158

F = 80 0.358 99.834 18.653 0.411 -1.3599 5.988 3.238

F = 95 0.381 100.000 17.768 0.231 -1.4113 5.724 2.874

F = 115 0.408 99.721 16.723 0.493 -1.4316 5.168 2.522

Column 1 represents the value of a specific parameter, keeping the remaining parameters fixed at

their base case values. Columns 2-8 report the volatility chosen, the current firm value, the market

value of one regular call, the total cost to the firm, the expected utility of terminal wealth, the

partial derivative of the expected utility with respect to the initial firm value, and PPS defined as

the partial derivative of the manager’s certainty equivalent with respect to the initial firm value, i.e.,

PPS = ∂U
−1(EP[U ])
∂V

, respectively.
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Figure 1: Effect of leverage in managerial risk choices

The figure plots the volatility level (σ) chosen by the executive as a function of the
face value of debt (F ) and for different coefficients of relative risk aversion (Λ)
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Figure 2: Effect of leverage in the agency costs of deviating from the optimal

volatility level

The agency cost, in the y-axis, is calculated in the following way: a
(

σ−σ0

σ0

)2

, where

a is the costliness of deviating from the optimal volatility level σ0, and σ is the volatility
chosen by the executive that maximizes her expected utility of terminal wealth under the
physical measure P.
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Table 2: Minimizing the total cost with company shares and regular
calls

σ V0(σ) 102NS VC 102NX TC 103 ∂EP[U ]
∂V

103PPS

Base 0.332 99.216 0.238 20.503 1.165 1.169 6.089 3.573

Λ = 0 0.589 84.832 0.257 32.733 0.470 15.475 12.129 12.129

Λ = 4 0.223 91.412 0.311 9.479 0.751 8.817 23.639 3.282

a = 10 0.292 99.465 0.220 17.222 1.534 0.932 6.520 3.908

a = 30 0.318 99.202 0.232 19.307 1.280 1.186 6.239 3.684

a = 70 0.341 99.257 0.255 21.241 0.959 1.105 6.059 3.544

a = 90 0.347 99.327 0.258 21.786 0.919 1.033 5.996 3.499

NX = 0.0% 0.346 99.594 0.182 21.752 1.006 0.738 5.575 2.958

NX = 0.2% 0.338 99.392 0.208 21.019 1.189 0.986 5.846 3.294

NX = 0.5% 0.330 99.145 0.241 20.269 1.351 1.277 6.139 3.685

NX = 1.0% 0.321 98.791 0.307 19.425 1.166 1.621 6.564 4.225

NS = 0.0% 0.382 99.999 0.099 25.056 0.000 0.065 3.637 1.204

NS = 0.2% 0.359 99.842 0.140 22.912 0.863 0.444 5.106 2.485

NS = 0.5% 0.307 98.131 0.397 17.967 1.564 2.386 7.098 5.287

NS = 1.0% 0.267 95.607 0.859 13.903 2.584 5.230 8.368 10.311

fNC = 0.0 0.333 99.224 0.256 20.569 0.957 1.130 7.235 3.519

fNC = 0.5 0.336 99.316 0.239 20.797 1.135 1.067 6.181 3.502

fNC = 1.0 0.329 99.096 0.229 20.139 1.347 1.316 6.152 3.618

K = 0.5V0(σ) 0.301 97.858 0.374 33.196 0.221 2.437 7.203 4.721

K = 0.8V0(σ) 0.320 98.750 0.275 24.971 0.639 1.576 6.544 3.969

K = 1.2V0(σ) 0.341 99.480 0.240 16.349 1.560 0.924 5.854 3.355

K = 1.5V0(σ) 0.344 99.558 0.277 10.267 1.238 0.742 5.928 3.316

NCW0 = 0.2 0.302 97.917 0.268 17.658 1.047 2.426 11.596 3.529

NCW0 = 0.5 0.361 99.879 0.225 23.103 1.029 0.501 3.244 3.737

NCW0 = 1.0 0.378 99.999 0.375 24.697 0.173 0.285 1.342 4.787

Continued on the next page
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σ V0(σ) 102NS VC 102NX TC 103 ∂EP[U ]
∂V

103PPS

F = 0 0.281 96.596 0.407 33.431 0.000 3.797 4.908 5.098

F = 10 0.277 96.346 0.385 29.521 0.061 4.016 5.323 4.990

F = 30 0.286 96.912 0.286 23.888 0.616 3.452 5.976 4.569

F = 50 0.318 98.671 0.222 21.527 1.316 1.759 5.796 3.844

F = 80 0.364 99.906 0.280 19.068 0.709 0.383 5.792 3.132

F = 95 0.376 99.993 0.351 17.363 0.174 0.214 5.868 2.946

F = 115 0.398 99.893 0.384 15.912 0.000 0.285 5.426 2.647

Column 1 represents the value of a specific parameter, keeping the remaining parameters fixed at their

base values, except the number of company shares and the number of regular calls, which are chosen to

minimize the total cost while preserving the utility level at each corresponding entry in Table 1. Columns

2-8 report the volatility chosen, the current firm value, the number of shares chosen, the market price

of one regular call, the number of regular calls chosen, the total cost to the firm, the partial derivative

of the expected utility with respect to the initial firm value, and PPS defined as the partial derivative

of the manager’s certainty equivalent with respect to the initial firm value, i.e., PPS = ∂U
−1(EP[U ])
∂V

,

respectively.
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Table 3: Risk effects of compensation contracts with lookback calls in
a levered firm

σ V0(σ) VLB 102NL TC 103 ∂EP[U ]
∂V

103PPS

Base 0.336 99.322 28.201 0.169 0.923 6.099 3.579

γ = 0 0.577 86.624 43.019 0.369 13.729 12.545 12.545

γ = 4 0.238 92.980 15.629 0.000 7.188 15.917 2.879

a = 10 0.276 99.252 21.823 0.193 0.981 6.734 4.037

a = 30 0.318 99.206 26.301 0.176 1.036 6.284 3.711

a = 70 0.345 99.419 29.248 0.165 0.829 5.997 3.507

a = 90 0.352 99.501 29.944 0.163 0.748 5.929 3.460

NX = 0.2% 0.331 99.174 27.680 0.072 1.043 6.041 3.403

NX = 0.5% 0.338 99.379 28.406 0.230 0.885 6.132 3.680

NX = 1.0% 0.342 99.487 28.792 0.452 0.842 6.231 4.010

NS = 0.0% 0.487 96.018 41.311 0.169 4.052 2.524 0.836

NS = 0.2% 0.366 99.934 31.637 0.167 0.247 5.143 2.503

NS = 0.5% 0.307 98.161 24.702 0.175 2.181 7.042 5.245

NS = 1.0% 0.265 95.455 19.295 0.208 5.142 8.224 10.134

fNC = 0.0 0.335 99.314 28.148 0.239 0.951 7.646 3.718

fNC = 0.5 0.338 99.394 28.458 0.265 0.879 6.598 3.738

fNC = 1.0 0.331 99.156 27.617 0.072 1.061 5.793 3.407

K = 0.5V0(σ) 0.342 99.505 28.850 0.520 0.844 6.255 4.099

K = 0.8V0(σ) 0.338 99.396 28.467 0.259 0.876 6.148 3.728

K = 1.2V0(σ) 0.333 99.244 27.921 0.111 0.985 6.066 3.476

K = 1.5V0(σ) 0.330 99.140 27.565 0.056 1.072 6.032 3.374

NCW0 = 0.2 0.308 98.225 24.860 0.186 2.012 11.356 3.456

NCW0 = 0.5 0.361 99.877 31.095 0.152 0.374 3.257 3.752

NCW0 = 1.0 0.397 99.896 34.814 0.115 0.352 1.138 4.058

F = 0 0.301 97.861 49.444 0.213 2.557 4.588 4.766

Continued on the next page
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σ V0(σ) VLB 102NL TC 103 ∂EP[U ]
∂V

103PPS

F = 10 0.298 97.658 42.720 0.218 2.725 5.053 4.737

F = 30 0.301 97.829 33.615 0.214 2.489 5.846 4.470

F = 50 0.324 98.918 29.569 0.296 1.381 6.200 4.112

F = 80 0.370 99.969 27.426 0.287 0.288 5.884 3.182

F = 95 0.392 99.950 26.817 0.280 0.290 5.624 2.824

F = 115 0.421 99.405 26.379 0.554 0.894 5.395 2.632

Column 1 represents the value of a specific parameter, keeping the remaining parameters

fixed at their base values. Columns 2-8 report the volatility chosen, the current firm value,

the market value of one lookback call, the number of lookback calls, which is chosen to yield

the same utility level as each corresponding entry in Table 1, the total cost to the firm, the

partial derivative of the expected utility with respect to the initial firm value, and the PPS

defined as the partial derivative of the manager’s certainty equivalent with respect to the

initial firm value, i.e., PPS = ∂U
−1(EP[U ])
∂V

, respectively.
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Table 4: Delta of regular calls and lookback calls

V0(σ) K σ ∆R ∆L

95.8460 V0(σ) 0.2705 0.7629 0.4757

89.5436 V0(σ) 0.5538 0.7942 0.7074

92.8501 0.5V0(σ) 0.2363 0.9798 0.4404

94.4325 0.8V0(σ) 0.2532 0.8684 0.4581

96.7804 1.2V0(σ) 0.2836 0.6641 0.4888

97.5166 1.5V0(σ) 0.2953 0.5377 0.5004

97.8315 1.8V0(σ) 0.3009 0.4342 0.5058

97.9207 2.0V0(σ) 0.3025 0.3757 0.5074

97.9383 2.5V0(σ) 0.3028 0.2593 0.5077

Column 1 represents the value of an unlevered (F = 0)

firm when Λ = 0 (row 2) and when Λ = 2 (remaining

rows). Columns 2 and 3 report the strike price and the

firm volatility used in the calculations. The remaining

parameters used in the calculation are T = 5 and r =

0.05. These parameters correspond to the ones used

by Ju, Leland, and Senbet (2014). Columns 5 and 6

report the delta of a regular call and that of a lookback

call, respectively, both computed numerically through

the finite difference method.
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Table 5: Risk effects of compensation contracts with regular calls or
lookback calls for different strike levels

K σ V0(σ) VLB TC EP[U(WT )]|102NL 103 ∂EP[U ]
∂V

103PPS

Panel A1: Unlevered firm Regular call

0.5V0(σ) 0.236 92.850 57.136 7.663 -0.864 4.9053 6.577

0.8V0(σ) 0.253 94.433 40.246 6.022 -0.942 4.7989 5.410

1.2V0(σ) 0.284 96.780 26.585 3.630 -1.010 4.6607 4.569

1.5V0(σ) 0.295 97.517 19.877 2.870 -1.039 4.6460 4.303

1.8V0(σ) 0.301 97.831 14.927 2.538 -1.058 4.6609 4.167

2.0V0(σ) 0.303 97.921 12.339 2.439 -1.066 4.6770 4.115

Panel A2: Unlevered firm Lookback call

0.5V0(σ) 0.302 97.886 49.604 2.688 0.529 4.384 5.878

0.8V0(σ) 0.302 97.903 49.644 2.560 0.305 4.528 5.105

1.2V0(σ) 0.300 97.802 49.417 2.585 0.152 4.627 4.536

1.5V0(σ) 0.299 97.713 49.219 2.647 0.095 4.661 4.317

1.8V0(σ) 0.297 97.638 49.057 2.705 0.062 4.681 4.185

2.0V0(σ) 0.297 97.597 48.969 2.738 0.047 4.690 4.126

Panel B1: Levered firm Regular call

0.5V0(σ) 0.301 97.861 33.149 2.455 -1.235 7.1714 4.700

0.8V0(σ) 0.317 98.622 24.741 1.665 -1.284 6.6954 4.060

1.2V0(σ) 0.327 99.043 15.292 1.211 -1.321 6.4075 3.672

1.5V0(σ) 0.331 99.155 9.198 1.077 -1.337 6.3207 3.536

1.8V0(σ) 0.332 99.187 3.842 1.025 -1.348 6.2859 3.461

2.0V0(σ) 0.331 99.185 0.642 1.015 -1.353 6.2785 3.431

Panel B2: Levered firm Lookback call

0.5V0(σ) 0.342 99.505 28.850 0.844 0.520 6.255 4.099

0.8V0(σ) 0.338 99.396 28.467 0.876 0.259 6.148 3.728

1.2V0(σ) 0.333 99.244 27.921 0.985 0.111 6.066 3.476

Continued on the next page
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K σ V0(σ) VLB TC EP[U(WT )]|102NL 103 ∂EP[U ]
∂V

103PPS

1.5V0(σ) 0.330 99.140 27.565 1.072 0.056 6.032 3.374

1.8V0(σ) 0.328 99.057 27.293 1.145 0.022 6.010 3.309

2.0V0(σ) 0.326 99.006 27.129 1.192 0.007 6.002 3.280

Column 1 reports the strike price, keeping other parameters fixed at their base values. Columns 2

– 8 report the volatility chosen, the current firm value, the market value of one regular or looback

call, the total cost to the firm, the expected utility in case of regular call or the number of lookback

options that yield the same utility as the regular call, partial derivative of the expected utility with

respect to the initial firm value, and the PPS defined as the partial derivative of the manager’s

certainty equivalent with respect to the initial firm value, i.e., PPS = ∂U
−1(EP[U ])
∂V

, respectively.

45



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Moneyness (strike price/initial firm value)

22

24

26

28

30

32

34

36

 (%
)

Regular call - unlevered firm
Lookback call - unlevered firm
Regular call - levered firm
Lookback call - levered firm

Figure 3: Risk effects of regular calls or lookback calls in a levered or unlevered

firm

The figure plots the volatility level (σ) chosen by the executive as a function of the
moneyness of her regular or lookback call options, in the context of both levered and
unlevered firms.
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Table 6: Risk effects of compensation contracts with Asian calls in a
levered firm

σ V0(σ) VA 102NA TC 103 ∂EP[U ]
∂V

103PPS

Base 0.345 99.568 17.429 0.098 0.835 6.209 3.644

γ = 0 0.537 91.481 19.535 0.918 8.978 10.693 10.693

γ = 4 0.230 92.217 13.359 0.019 8.201 22.881 3.177

a = 10 0.280 99.310 15.718 0.111 1.130 6.777 4.062

a = 30 0.330 99.472 17.043 0.103 0.938 6.340 3.744

a = 70 0.353 99.639 17.635 0.096 0.759 6.139 3.590

a = 90 0.358 99.692 17.764 0.095 0.704 6.095 3.556

NX = 0.2% 0.336 99.341 17.188 0.056 1.057 6.281 3.539

NX = 0.5% 0.348 99.653 17.532 0.124 0.753 6.174 3.706

NX = 1.0% 0.356 99.805 17.749 0.211 0.613 6.078 3.912

NS = 0.0% 0.419 99.460 19.101 0.344 0.606 2.065 0.684

NS = 0.2% 0.378 99.998 18.281 0.126 0.257 5.290 2.575

NS = 0.5% 0.311 98.329 16.372 0.076 2.300 7.151 5.327

NS = 1.0% 0.265 95.393 14.667 0.048 5.893 8.315 10.245

fNC = 0.0 0.350 99.683 17.572 0.106 0.719 7.292 3.546

fNC = 0.5 0.349 99.673 17.558 0.105 0.729 6.333 3.588

fNC = 1.0 0.339 99.430 17.277 0.092 0.974 6.289 3.699

K = 0.5V0(σ) 0.337 99.355 45.314 0.094 1.213 6.339 4.155

K = 0.8V0(σ) 0.339 99.410 26.234 0.091 1.063 6.290 3.814

K = 1.2V0(σ) 0.348 99.640 11.382 0.111 0.712 6.159 3.530

K = 1.5V0(σ) 0.352 99.730 5.993 0.140 0.586 6.093 3.408

NCW0 = 0.2 0.314 98.491 16.487 0.070 1.915 11.347 3.454

NCW0 = 0.5 0.371 99.969 18.113 0.133 0.430 3.410 3.929

NCW0 = 1.0 0.407 99.750 18.888 0.203 0.647 1.273 4.540

F = 0 0.327 99.034 16.909 0.346 1.612 4.723 4.906

Continued on the next page

47



σ V0(σ) VA 102NA TC 103 ∂EP[U ]
∂V

103PPS

F = 10 0.321 98.813 16.727 0.283 1.793 5.080 4.762

F = 30 0.316 98.578 16.550 0.185 1.945 5.805 4.438

F = 50 0.340 99.438 17.286 0.175 1.008 6.101 4.047

F = 80 0.377 99.997 18.269 0.118 0.352 6.030 3.261

F = 95 0.395 99.918 18.667 0.102 0.395 5.903 2.964

F = 115 0.419 99.483 19.087 0.138 0.803 5.666 2.764

Column 1 represents the value of a specific parameter, keeping the remaining parameters

fixed at their base values. Columns 2-8 report the volatility chosen, the current firm value,

the market value of one Asian call, the number of Asian calls, which is chosen to yield the

same utility level as each corresponding entry in Table 1, the total cost to the firm, the

partial derivative of the expected utility with respect to the initial firm value, and the PPS

defined as the partial derivative of the manager’s certainty equivalent with respect to the

initial firm value, i.e., PPS = ∂U
−1(EP[U ])
∂V

, respectively.
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Table 7: Risk effects of compensation contracts with power calls in a
levered firm

σ V0(σ) VP 102NP TC 103 ∂EP[U ]
∂V

103PPS

Base 0.343 99.517 55.334 0.362 0.883 6.210 3.644

γ = 0 0.746 53.676 439.420 0.061 46.715 18.125 18.125

γ = 4 0.225 91.661 16.584 0.914 8.653 23.429 3.253

a = 10 0.294 99.492 37.750 0.433 0.865 6.758 4.051

a = 30 0.328 99.438 49.433 0.381 0.948 6.375 3.764

a = 70 0.351 99.588 58.879 0.351 0.819 6.118 3.578

a = 90 0.356 99.643 61.245 0.344 0.769 6.060 3.536

NX = 0.2% 0.337 99.352 52.915 0.179 0.942 6.269 3.532

NX = 0.5% 0.345 99.564 56.072 0.494 0.912 6.187 3.713

NX = 1.0% 0.346 99.601 56.295 1.146 1.243 6.146 3.956

NS = 0.0% 0.584 85.642 237.005 0.209 14.852 2.328 0.771

NS = 0.2% 0.382 99.999 73.906 0.332 0.374 5.138 2.501

NS = 0.5% 0.309 98.262 41.849 0.391 2.200 7.231 5.386

NS = 1.0% 0.264 95.341 26.901 0.438 5.332 8.440 10.400

fNC = 0.0 0.346 99.592 56.673 0.364 0.814 7.259 3.530

fNC = 0.5 0.347 99.622 57.229 0.358 0.783 6.302 3.570

fNC = 1.0 0.337 99.369 53.042 0.367 1.024 6.327 3.721

K = 0.5V0(σ) 0.331 99.161 62.903 0.534 1.371 6.546 4.290

K = 0.8V0(σ) 0.341 99.461 58.915 0.423 0.987 6.280 3.808

K = 1.2V0(σ) 0.343 99.522 51.491 0.310 0.838 6.181 3.542

K = 1.5V0(σ) 0.341 99.480 45.772 0.250 0.833 6.178 3.456

NCW0 = 0.2 0.310 98.326 42.322 0.416 2.042 11.562 3.519

NCW0 = 0.5 0.375 99.993 70.753 0.316 0.436 3.329 3.835

NCW0 = 1.0 0.429 99.170 101.344 0.258 1.302 1.206 4.301

F = 0 0.300 97.803 69.544 0.412 2.796 4.425 4.596

Continued on the next page
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σ V0(σ) VP 102NP TC 103 ∂EP[U ]
∂V

103PPS

F = 10 0.300 97.801 62.898 0.412 2.748 4.906 4.599

F = 30 0.305 98.067 53.578 0.405 2.397 5.807 4.440

F = 50 0.330 99.123 53.916 0.634 1.432 6.175 4.095

F = 80 0.379 99.999 63.632 0.702 0.626 5.943 3.214

F = 95 0.402 99.836 69.524 0.740 0.846 5.708 2.866

F = 115 0.430 99.127 76.688 2.061 2.608 5.395 2.632

The option is computed with a power coefficient ϕ = 3/2. Column 1 represents the value of

a specific parameter, keeping the remaining parameters fixed at their base values. Columns

2-8 report the volatility chosen, the current firm value, the market value of one power call, the

number of power calls, which is chosen to yield the same utility level as each corresponding

entry in Table 1, the total cost to the firm, the partial derivative of the expected utility with

respect to the initial firm value, and PPS defined as the partial derivative of the manager’s

certainty equivalent with respect to the initial firm value, i.e., PPS = ∂U
−1(EP[U ])
∂V

, respectively.
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Appendix B. Regular call options - Unlevered firm

Table B.1: Risk effects of compensation contracts with regular calls in
a unlevered firm

σ V0(σ) VC TC EP[U(WT )] 103 ∂EP[U ]
∂V

103PPS

Base 0.270 95.846 32.504 4.583 -0.9812 4.707 4.890

Λ = 0 0.554 89.544 47.526 10.922 1.6371 12.161 12.161

Λ = 4 0.174 85.299 23.425 15.062 -0.5146 7.994 4.480

a = 10 0.184 97.352 27.384 3.063 -0.9526 4.872 5.369

a = 30 0.239 95.896 30.479 4.526 -0.9710 4.796 5.086

a = 70 0.290 96.094 33.902 4.342 -0.9875 4.636 4.753

a = 90 0.304 96.392 34.923 4.048 -0.9919 4.580 4.655

NX = 0.0% 0.290 97.201 34.283 3.110 -1.0952 4.863 4.055

NX = 0.2% 0.280 96.551 33.392 3.824 -1.0273 4.774 4.523

NX = 0.5% 0.264 95.349 31.917 5.114 -0.9554 4.670 5.116

NX = 1.0% 0.240 93.185 29.634 7.406 -0.8738 4.558 5.970

NS = 0.0% 0.348 99.636 39.119 0.512 -1.5761 2.412 0.971

NS = 0.2% 0.283 96.767 33.679 3.554 -1.1406 4.466 3.433

NS = 0.5% 0.259 94.943 31.456 5.651 -0.8129 4.673 7.070

NS = 1.0% 0.244 93.629 30.071 7.420 -0.5534 4.026 13.144

fNC = 0.0 0.275 96.155 32.884 4.277 -1.0656 5.386 4.743

fNC = 0.5 0.274 96.098 32.813 4.333 -1.0017 4.822 4.806

fNC = 1.0 0.267 95.578 32.183 4.849 -0.9731 4.703 4.967

Continued on the next page
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σ V0(σ) VC TC EP[U(WT )] 103 ∂EP[U ]
∂V

103PPS

K = 0.5V0(σ) 0.236 92.850 57.136 7.663 -0.8636 4.905 6.577

K = 0.8V0(σ) 0.253 94.433 40.246 6.022 -0.9418 4.799 5.410

K = 01.2V0(σ) 0.284 96.780 26.585 3.630 -1.0100 4.661 4.569

K = 1.5V0(σ) 0.295 97.517 19.877 2.870 -1.0391 4.646 4.303

NCW0 = 0.2 0.250 94.154 30.608 6.263 -1.2360 7.326 4.796

NCW0 = 0.5 0.293 97.374 34.534 3.068 -0.7557 2.881 5.045

NCW0 = 1.0 0.332 99.198 37.864 1.263 -0.4684 1.195 5.448

Column 1 represents the value of a specific parameter, keeping the remaining parameters fixed at

their base values. Columns 2-8 report the volatility chosen, the current firm value, the market value

of one regular call, the total cost to the firm, the expected utility of terminal wealth, the partial

derivative of the expected utility with respect to the initial firm value, and the PPS defined as the

partial derivative of the manager’s certainty equivalent with respect to the initial firm value, i.e.,

PPS = ∂U
−1(EP[U ])
∂V

, respectively.
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Table B.2: Minimizing the total cost with company shares and regular
calls

σ V0(σ) 102NS VC 102NX TC 103 ∂EP[U ]
∂V

103PPS

Base 0.281 96.596 0.407 33.452 0.000 3.797 4.908 5.098

Λ = 0 0.506 94.527 0.563 47.237 0.000 6.005 11.515 11.515

Λ = 4 0.203 89.212 0.371 26.200 0.000 11.119 7.905 4.431

a = 10 0.193 97.569 0.394 27.962 0.062 2.832 4.994 5.503

a = 30 0.250 96.493 0.408 31.369 0.000 3.901 4.977 5.278

a = 70 0.300 96.882 0.406 34.824 0.000 3.511 4.852 4.975

a = 90 0.313 97.172 0.405 35.794 0.000 3.222 4.808 4.887

NX = 0.0% 0.290 97.201 0.320 34.283 0.000 3.110 4.863 4.055

NX = 0.2% 0.285 96.843 0.369 33.783 0.000 3.514 4.903 4.646

NX = 0.5% 0.279 96.458 0.430 33.270 0.000 3.957 4.903 5.372

NX = 1.0% 0.273 96.013 0.511 32.707 0.000 4.478 4.849 6.351

NS = 0.0% 0.354 99.772 0.048 39.639 0.180 0.347 3.018 1.215

NS = 0.2% 0.294 97.437 0.291 34.627 0.000 2.847 4.816 3.702

NS = 0.5% 0.268 95.677 0.583 32.301 0.000 4.881 4.770 7.218

NS = 1.0% 0.251 94.207 1.078 30.663 0.000 6.809 4.044 13.201

fNC = 0.0 0.287 96.995 0.409 33.992 0.000 3.402 5.649 4.975

fNC = 0.5 0.284 96.840 0.408 33.778 0.000 3.556 5.049 5.031

fNC = 1.0 0.277 96.362 0.405 33.146 0.000 4.029 4.884 5.158

K = 0.5V0(σ) 0.272 95.957 0.523 59.509 0.000 4.544 4.838 6.487

K = 0.8V0(σ) 0.278 96.384 0.442 42.241 0.000 4.042 4.898 5.522

K = 1.2V0(σ) 0.285 96.844 0.349 26.677 0.188 3.545 4.780 4.686

K = 1.5V0(σ) 0.298 97.666 0.289 20.131 0.790 2.774 4.437 4.110

NCW0 = 0.2 0.265 95.452 0.399 32.036 0.000 4.929 7.519 4.922

NCW0 = 0.5 0.298 97.643 0.409 34.941 0.027 2.765 3.034 5.313

NCW0 = 1.0 0.331 99.181 0.343 37.823 0.300 1.272 1.214 5.531

Continued on the next page
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σ V0(σ) 102NS VC 102NX TC 103 ∂EP[U ]
∂V

103PPS

Column 1 represents the value of a specific parameter, keeping the remaining parameters fixed at their

base values, except the number of company shares and the number of regular calls which are chosen

to minimize the total cost while preserving the utility level at each corresponding entry in Table B.1.

Columns 2-8 report the volatility chosen, the current firm value, the number of shares chosen, the

market price of one regular call, the number of regular calls chosen, the total cost to the firm, the

partial derivative of the expected utility with respect to the initial firm value, and the PPS defined as

the partial derivative of the manager’s certainty equivalent with respect to the initial firm value, i.e.,

PPS = ∂U
−1(EP[U ])
∂V

, respectively.
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Appendix C. Lookback calls - Unlevered firm

Table C.1: Risk effects of compensation contracts with lookback calls
in an unlevered firm

σ V0(σ) VLB 102NL TC 103 ∂EP[U ]
∂V

103PPS

Base 0.301 97.861 49.549 0.213 2.557 4.588 4.766

Λ = 0 0.545 90.543 63.558 0.342 9.963 12.402 12.402

Λ = 4 0.216 90.715 38.009 0.082 9.607 6.822 3.823

a = 10 0.242 98.676 44.021 0.246 1.748 4.686 5.164

a = 30 0.279 97.897 47.448 0.224 2.522 4.639 4.920

a = 70 0.316 97.991 50.948 0.206 2.427 4.547 4.662

a = 90 0.325 98.147 51.939 0.201 2.271 4.515 4.589

NW = 0.2% 0.299 97.749 49.298 0.117 2.622 4.648 4.404

NW = 0.5% 0.302 97.895 49.624 0.272 2.553 4.550 4.984

NW = 1.0% 0.302 97.894 49.624 0.496 2.663 4.405 5.770

NS = 0.0% 0.433 99.040 61.535 0.179 1.069 2.688 1.082

NS = 0.2% 0.325 98.941 52.286 0.202 1.363 4.352 3.345

NS = 0.5% 0.281 96.630 47.023 0.225 3.958 4.579 6.929

NS = 1.0% 0.256 94.707 43.692 0.248 6.347 3.989 13.024

fNC = 0.0 0.303 97.939 49.725 0.211 2.478 5.391 4.748

fNC = 0.5 0.302 97.920 49.681 0.228 2.506 4.828 4.812

fNC = 1.0 0.300 97.796 49.404 0.193 2.612 4.455 4.705

K = 0.5V0(σ) 0.302 97.886 49.604 0.529 2.688 4.384 5.878

K = 0.8V0(σ) 0.302 97.903 49.644 0.305 2.560 4.528 5.105

K = 01.2V0(σ) 0.300 97.802 49.417 0.152 2.585 4.627 4.536

K = 1.5V0(σ) 0.299 97.713 49.219 0.095 2.647 4.661 4.317

NCW0 = 0.2 0.281 96.640 47.043 0.213 3.769 7.155 4.684

NCW0 = 0.5 0.322 98.852 52.030 0.208 1.572 2.792 4.888

Continued on the next page
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σ V0(σ) VLB 102NL TC 103 ∂EP[U ]
∂V

103PPS

NCW0 = 01.0 0.357 99.812 55.662 0.189 0.612 1.128 5.141

Column 1 represents the value of a specific parameter, keeping the remaining parameters

fixed at their base values. Columns 2-8 report the volatility chosen, the current firm value,

the market value of one lookback call, the number of lookback calls which is chosen to yield

the same utility level as each corresponding entry in Table B.1, the total cost to the firm,

the partial derivative of the expected utility with respect to the initial firm value, and the

PPS defined as the partial derivative of the manager’s certainty equivalent with respect to the

initial firm value, i.e., PPS = ∂U
−1(EP[U ])
∂V

, respectively.
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Appendix D. Effect of Leverage in Managerial Risk Choices

for Different r Parameters
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Figure D.1: Effect of leverage in managerial risk choices when r = 0%

We consider Λ ∈ {2, 3, 5, 7} and F ∈ [0, 115]. The remaining parameters are fixed at
their base values.
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Figure D.2: Effect of leverage in managerial risk choices when r = 10%

We consider Λ ∈ {2, 3, 5, 7} and F ∈ [0, 115]. The remaining parameters are fixed at
their base values.
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Appendix E. Effect of Leverage in the Agency Costs

of Deviating from the Optimal Volatility

Level for Different r Parameters
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Figure E.1: Effect of leverage in the agency costs of deviating from the optimal

volatility level for r = 0%

The agency cost, in the y-axis, is calculated in the following way: a
(

σ−σ0

σ0

)2

, where

a is the costliness of deviating from the optimal volatility level σ0, and σ is the volatility
chosen by the executive that maximizes her expected utility of terminal wealth under the
physical measure P. We assume F ∈ [0, 115], r = 0% and a ∈ {10, 30, 50, 70, 90}. The
remaining parameters are fixed at their base values.
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Figure E.2: Effect of leverage in the agency costs of deviating from the optimal

volatility level for r = 10%

The agency cost, in the y-axis, is calculated in the following way: a
(

σ−σ0

σ0

)2

, where

a is the costliness of deviating from the optimal volatility level σ0, and σ is the volatility
chosen by the executive that maximizes her expected utility of terminal wealth under the
physical measure P. We assume F ∈ [0, 170], r = 10% and a ∈ {10, 30, 50, 70, 90}. The
remaining parameters are fixed at their base values.
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