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Abstract 

This paper proposes a new framework to study systemic climate risks in the financial sector. 

Using market-based measures of physical and transition climate risks, we identify which 

European financial institutions are the most vulnerable to climate risks and test whether climate 

risks can generate tail dependence among financial institutions. We show that, unlike physical 

risk, transition risk significantly influences systemic risk. The exposure to transition risk 

appears lower for institutions with cleaner investment and lending portfolios. Besides, the 

financial institutions most exposed to transition risk tend to engage more in carbon disclosure. 
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1. Introduction 

In 2015, the governor of the Bank of England stated that climate change can profoundly 

affect asset prices and financial stability (Carney, 2015). Since then, the potential systemic 

impact of climate risks has become a central concern in the financial community (Stroebel and 

Wurgler, 2021). Climate risks are generally decomposed into physical risks, stemming from the 

effects of climate change and climate-related hazards (e.g., heat waves, extreme precipitation, 

wildfires, etc.), and transition risks, arising from changes in the preferences of stakeholders, 

changes in regulation, legal exposure due to contributing to climate change, and climate-related 

technological disruption (Krueger et al., 2020, Stroebel and Wurgler, 2021). Physical and 

transition risks can adversely affect financial institutions through, for example, losses in the 

value of financial portfolios, increases in claims paid by insurers, or decreases in the 

creditworthiness of borrowers. These shocks can pose a threat to financial stability if they occur 

simultaneously or if an extreme individual shock is transmitted to other institutions through the 

network of financial interconnections. We refer to these threats to the financial system 

emanating from climate risks as “systemic climate risk.” 

This article proposes a new analytical framework based on environmental and stock market 

data to empirically assess whether climate risks influence systemic risk within the financial 

sector. From a theoretical perspective, the economic rationale for using a market-based 

approach to assess the effect of climate risks on systemic risk is that climate risks should lead 

to a repricing of securities held by financial institutions. Our framework provides a tool to 

identify which financial institutions are the most vulnerable to climate risks and explore how 

financial institutions and policymakers might undertake actions to reduce systemic climate risk. 

While existing papers focus on individual vulnerabilities (e.g., Alessi et al., 2021; Jung et al., 

2021; Ojea Ferreiro et al., 2022), our framework also test whether climate risks can exacerbate 
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tail dependence among financial institutions, which is a key element to assess the level of 

systemic risk in the financial sector (e.g., Billio et al., 2012). Therefore, our approach has the 

advantage of taking into account potential second-round effects of climate risks within the 

financial sector, these effects being generally overlooked but representing an important source 

of systemic climate risk (Duarte and Eisenbach, 2021).1 Indeed, common holdings of different 

market participants, direct interdependencies among financial institutions, and potential fire-

sale dynamics could amplify the impact of climate risks on financial stability.  

We proceed in several steps. First, for the purpose of our study, we design a new systemic 

risk measure, related to the methods suggested by Adams et al. (2014), Adrian and 

Brunnermeier (2016), and Kelly and Jiang (2014). Specifically, using a GARCH model, we 

estimate time-varying Value-at-Risk (VaR) measures from the stock returns of financial 

institutions. Equity returns are intended to be informative about the risks of financial institutions 

and may reflect information more quickly than accounting variables. The use of tail risk 

measures meets our objective of analyzing whether climate risks threaten financial stability. 

Based on principal component analysis, we extract the first principal component from the 

correlation matrix among the time variations in individual VaR measures. The first principal 

component provides a dynamic indicator of systemic risk that captures common shifts in 

financial institution tails, i.e., tail risk dependence within the financial sector. The loadings of 

each institution on the first principal component represent their respective contribution to global 

downside risk. 

Second, we construct climate risk factors. Using a large sample of dead and alive stocks 

(excluding financial sector companies), we build two long-short factor mimicking portfolios, 

 
 

1 See also here.  

https://www.globalriskregulator.com/Regions/Global/FSB-fears-climate-related-contagion-effects-on-financial-system?ct=true
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respectively based on carbon emission intensity and physical risk scores. Since we are interested 

in extreme climate risks and for consistency with the first step, we estimate the VaR of each 

climate risk factor based on the aforementioned approach. To the best of our knowledge, this 

article is the first to focus on extreme climate risks in this context.  

Third, we propose a two-pass procedure to assess whether climate risks can exacerbate tail 

risk dependence among financial institutions. We build on the protocol suggested by 

Pukthuangthong et al. (2019) to evaluate whether factors are related to stock return 

comovements and extend their approach to tail risks. In addition, we propose a robustness test 

that exploits cross-sectional information on individual climate risk exposures and individual 

loadings on systemic risk. More precisely, we start by running a time-series regression of the 

variations in systemic risk on climate risk factors and a list of control variables representing 

other potential determinants of systemic risk. This step allows us to verify whether a rise in 

climate risks is associated with an overall increase in downside risk within the financial sector. 

We then perform a cross-sectional regression of financial institutions' contributions to systemic 

risk on financial institutions' exposures to climate risks. We control for other risk exposures, 

include fixed effects for country and financial industry, and compute clustered standard errors. 

This step examines whether the institutions most exposed to climate risks contribute more to 

global downside risk. Financial institutions' exposures to climate risks are derived from the 

sensitivity of the time variations in the VaR of each financial institution to climate risk factors. 

This individual measure is an extension of Adrian and Brunnermeier's (2016) work, akin to a 

“Climate” Exposure CoVaR measure, that incorporates extreme climate risks as potential stress 

factors for financial institutions. 

Fourth, we investigate the characteristics of the financial institutions that are correlated with 

individual climate risk exposures. Understanding these characteristics is essential for regulators 
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and financial practitioners to undertake actions to mitigate systemic climate risks. Specifically, 

we examine the effect of various financial characteristics, as well as environmental and 

governance characteristics, on the level of climate risk exposure. We then analyze how financial 

institutions adapt to these climate risks, with a focus on carbon disclosure policies.  

Overall, our framework provides a tool to evaluate the current level of vulnerability of 

financial institutions to climate risks and dynamically monitor whether the effect of climate 

risks on financial stability is becoming a growing threat for investors. Our approach can also 

help financial institutions and supervisors identify levers to mitigate systemic climate risks. 

Finally, our findings can be exploited as inputs in stress-testing exercises (e.g., Dietz et al., 

2016; Battiston et al., 2017; Roncoroni et al., 2021; Vermeulen et al., 2018) and should be 

considered complementary to research on the development of climate scenarios and 

assumptions about the future impact of climate risks on asset prices, which is subject to 

considerable uncertainty (Barnett et al., 2020). 

Our empirical analysis is based on a sample of European stocks, spanning from 2005 to 2022 

and extracted from Refinitiv Datastream. For financial institutions, we focus on 332 stocks with 

a market capitalization above €100 million in 2022. Our results indicate that transition risks 

significantly affect the VaR of financial institutions and, more importantly, can exacerbate tail 

dependence within the financial sector. By contrast, we do not find evidence of such an effect 

in the case of physical climate risks. This result is in line with recent surveys (Krueger et al., 

2020; Stroebel and Wurgler, 2021) indicating that financial researchers and practitioners 

consider that the materialization of regulatory risk is more immediate than that of physical risks.  

Looking at the characteristics of institutions correlated with climate risks, we find that 

climate risk exposure is lower for financial institutions that engage in environmentally 

responsible initiatives and incentivize board members to consider the longer term. Using Scope 
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3 carbon data emissions from Carbone 4, we also show that institutions with cleaner investment 

and lending portfolios are less exposed to transition risks. Lastly, our analysis indicates that 

transition risk exposure is a significant determinant of carbon disclosure decisions among 

financial institutions.  

Our study is linked to the literature on the influence of climate risks on financial markets. 

Many papers find premiums associated to climate risks in equity markets (e.g., Ardia et al., 

2020; Bolton and Kacperczyk, 2021; Choi et al., 2020; Görgen et al., 2020), real estates (e.g., 

Bernstein et al., 2019; Baldauf et al., 2020; Murfin and Spiegel, 2020) or bond markets (e.g., 

Flammer, 2021; Zerbib, 2019). Despite these premiums, other papers point out that climate 

risks remain underestimated by market participants (e.g., Hong et al., 2019; Alok et al., 2020; 

Kruttli et al., 2020).2 Andersson et al. (2016) and Engle et al. (2020) suggest approaches to 

dynamically hedge climate risks using climate news. Besides, several papers examine how 

financial institutions adjust their operations as a consequence of climate events (e.g., Manconi 

et al., 2016; Schüwer et al., 2019; Ge and Weisbach, 2021; Massa and Zhang, 2021). We 

contribute to this literature by assessing whether climate risks can affect the tail risk of financial 

institutions, highlighting how financial institutions adapt to these risks, and identifying the 

levers financial institutions might have to reduce their exposure to climate risks. To the best of 

our knowledge, only Li et al. (2020) and Sautner et al. (2020) propose an institution-level 

measure of climate risk and investigate which characteristics correlate with this measure, and 

we are the first to adopt such an approach using a market-based measure of tail climate risks. 

 
 

2 All these articles should be conceptually distinguished from studies assessing how considerations on Corporate 

Social Responsibility (CSR) affect asset returns, for example Lins et al. (2017), Pástor et al. (2021), and Pedersen 

et al. (2021). CSR is defined by Liang and Renneboog (2020) as the internalization by firms of the externalities 

they create. 
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Another strand of literature focuses on the effect of various Environmental, Social, and 

Governance (ESG) and climatic dimensions on extreme returns. Lins et al. (2017) show that 

firms with good ESG scores performed better during the global financial crisis, while Ilhan et 

al. (2021b) find that brown stocks are more exposed to tail downside risks based on option 

markets. Several articles examine how certain individual ESG characteristics may help reduce 

systemic risk measures, such as ∆𝐶𝑜𝑉𝑎𝑅 and 𝑆𝑅𝐼𝑆𝐾 (Anginer et al., 2018; Scholtens and van't 

Klooster, 2019; Cerqueti et al., 2021; Kleymenova and Tuna, 2021; Aevoae et al., 2022). Jung 

et al. (2021) develop a climate systematic risk measure (CRISK), derived from the SRISK 

indicator (Brownlees and Engle, 2017), which focuses on banks’ exposure to fossil fuels. 

Related methodologies to assess individual climate risk exposures have also been proposed by 

Alessi et al. (2021) and Ojea Ferreiro et al. (2022). Our contributions to this literature are 

threefold. First, our study includes all types of financial institutions and focuses on both 

transition and physical extreme climate risks. Second, we propose a novel individual climate 

risk measure for financial institutions derived from Adrian and Brunnermeier’s (2016) work. 

Third, our framework places a central focus on tail dependence among financial institutions, a 

key aspect of systemic risk, allowing us to capture the potential second-round effects of climate 

risks. Overall, compared to previous studies, we provide a more comprehensive study on the 

quantification and financial stability implications of climate risks for financial institutions. 

We also contribute to the literature on the determinants and consequences of nonfinancial 

reporting. On the one hand, many papers investigate the determinants of voluntary nonfinancial 

disclosure. Firm size, regulations regarding disclosure, profitability, leverage, and industry 

affiliation are significant predictors of the choice of disclosing nonfinancial information (e.g., 

Cormier and Magnan, 1999; Brammer and Pavelin, 2006; Dhaliwal et al., 2011). Ilhan et al. 

(2021a) further show that institutional ownership increases the likelihood of voluntarily 
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disclosing non-financial information, while Cormier and Magnan (1999) find that concentrated 

ownership decreases it. The characteristics of CEOs, shareholder resolutions and the threat of 

new regulations also influence nonfinancial disclosure (e.g., Haniffa and Cooke, 2005; Reid 

and Toffel, 2009; Lewis et al., 2014). On the other hand, several papers study the impact of 

voluntary or mandatory nonfinancial disclosure on various outcomes such as firm value (e.g., 

Matsumura et al., 2014; Plumlee et al., 2015; Griffin et al., 2017; Grewal et al. 2019), cost of 

equity (e.g., Dhaliwal et al., 2011), analyst forecast accuracy (e.g., Dhaliwal et al., 2012), or 

subsequent nonfinancial performance (e.g., Christensen et al., 2017; Kim et al., 2022). We 

contribute to this literature by showing that exposure to climate transition risks significantly 

increases the propensity of financial institutions to disclose their carbon emissions.  

The rest of the paper is as follows. We present the data and methodology in Section 2, the 

empirical results in Section 3, and we conclude in Section 4. 

2. Data and methodology 

2.1. Systemic risk measure 

We define a new measure of systemic risk among financial institutions based on common 

variations in the VaR of financial institutions. It relates to Adrian et al. (2016) CoVaR measure 

insofar as it examines how one institution's tail risk evolves conditional on the others. Our setup 

also shares similarities with Adams et al. (2014), as we first estimate the VaR (see Section 2.2) 

of each financial institution and then investigate their comovements. We extract common 

variations in VaR based on a principal component analysis. We argue that this approach is better 

suited to relatively large samples than the vector autoregressive models proposed by Adams et 

al. (2014). Cooley and Thibaud (2019) also suggest an approach to extract principal components 

from a tail dependence matrix based on multivariate extreme value analysis. We believe that 
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one advantage of working with time-varying VaR is that the estimation of tail dependence can 

be performed on the entire sample instead of a small number of extreme observations. Finally, 

our method is linked to that of Kelly and Jiang (2014) who directly estimate common dynamics 

in the tail risk of firms using the cross-section of returns. However, unlike their approach, we 

can use our setup to derive time-varying individual measures of tail risk.  

The principal component analysis is based on a singular value decomposition of the matrix: 

Ξ = [𝑑𝑖𝑎𝑔(∑)]−1 2⁄ ∑ [𝑑𝑖𝑎𝑔(∑)]−1 2⁄  (1) 

with ∑ = 𝑁−1𝑇−1Δ𝑉𝑎𝑅̅̅ ̅̅ ̅̅ ̅′Δ𝑉𝑎𝑅̅̅ ̅̅ ̅̅ ̅, 𝑁 being the number of financial institutions, 𝑇 the length of 

the period, and Δ𝑉𝑎𝑅̅̅ ̅̅ ̅̅ ̅ a matrix of de-meaned VaR measures, in first difference to ensure 

stationarity. We can define the estimator of systemic risk and its loadings from Equations (2) 

and (3): 

Ω̂ = 𝑇1 2⁄  𝜉′ (2) 

Χ̂ = 𝑇−1Δ𝑉𝑎𝑅̅̅ ̅̅ ̅̅ ̅ Ω̂′ (3) 

where 𝜉: [𝜉1, … , 𝜉𝑗] are the normalized eigenvectors corresponding to the largest eigenvalues of 

Ξ. Our time series estimator of systemic risk is given by Ω̂1, the first principal component 

extracted from Ξ. The loadings of each financial institution to Ω̂1 are given by Χ̂1, a N × 1 

vector extracted from the Χ̂ matrix.  

Our two-pass regression procedure to test whether climate risks can generate tail dependence 

among financial institutions consists of the following steps. We start by running a time-series 

OLS regression of Ω̂1 onto a set of climate risk factors, 𝐵𝑀𝐺 and 𝑉𝑀𝑆, and control risk factors 

𝑓: 
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Ω̂1,𝑡  = 𝛼 +  𝛽𝐵𝑀𝐺𝐵𝑀𝐺𝑡 + 𝛽𝑉𝑀𝑆𝑉𝑀𝑆𝑡 + ∑ 𝛽𝑓𝑖
𝑓𝑖,𝑡

𝐼

𝑖=3

+ 𝜀𝑡,       𝑖, 𝑖, 𝑑.  𝜀~ 𝒩(0,1) (4) 

where 𝐵𝑀𝐺𝑡 and 𝑉𝑀𝑆𝑡 are the transition and physical climate risk factors, described in Section 

2.3, and 𝑓 is a T × (I-3) matrix containing a list of control variables. We use a modified version 

of Fama and French (2015) factors and other variables capturing the degree of risk aversion, 

interbank market liquidity, default premium, and the state of the economic activity. This 

regression estimates the effect of an increase in climate risks on simultaneous changes in the 

downside risk of financial institutions. 

By successively replacing Ω̂1 in Equation (4) by Δ𝑉𝑎𝑅𝑗
̂ , the VaR of each financial institution 

𝑗, where 𝑗 ∈ [1: 𝑁], we obtain 𝛽̂, a 𝑁 × 𝐼 matrix of the sensitivity of the VaR of each financial 

institution to our climate extreme risk factors as well as other control variables mentioned 

above. This measure is akin to a “Climate” Exposure CoVaR indicator, as it analyzes how 

climate risks contribute to each financial institution’s stress. 

We then perform a cross-sectional OLS regression of Χ̂1, the loadings of each financial 

institutions j to Ω̂1, onto 𝛽̂: 

Χ̂1,𝑗 = 𝛼 +  𝛾𝐵𝑀𝐺𝛽̂𝐵𝑀𝐺,𝑗 + 𝛾𝑉𝑀𝑆𝛽̂𝑉𝑀𝑆,𝑗 + ∑ 𝛾𝑓𝑖
𝛽̂𝑓𝑖,𝑗

𝐼

𝑖=3

+ 𝜀𝑗 ,       𝑖, 𝑖, 𝑑.  𝜀~ 𝒩(0,1) (5) 

This second regression tests whether the financial institutions most exposed to climate risks 

have stronger tail dependence with the rest of the financial sector. 

We consider that climate risks exacerbate tail dependence among financial institutions if 

the respective coefficients 𝛽̂𝐵𝑀𝐺,𝑗, 𝛽̂𝑉𝑀𝑆,𝑗, 𝛾𝐵𝑀𝐺, 𝛾𝑉𝑀𝑆 are both positive and significant. We 

estimate standard errors based on Newey and West (1987) for time-series regressions and White 

(1980) for cross-sectional regressions. 
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2.2. VaR estimation 

Our approach requires estimating the VaR of financial institutions, which in turn are used as 

inputs in a correlation matrix to assess tail risk dependences. Existing articles estimate asset 

comovements based on returns, volatility, and VaR (e.g, Diebold and Yilmaz, 2009; Adams et 

al., 2014; White et al., 2015). We argue that measuring comovements among tail risk indicators 

is better suited to capture systemic risk than relying on return comovements. Besides, Table 1 

shows that the largest interconnections between financial institutions are different whether we 

use the comovements among returns or VaR to identify them.  

The VaR is the estimated loss of a financial institution that, within a given period, will not 

be exceeded with a certain probability θ. Thus, if θ equals to 95%, the 1-month θ-VaR shows 

the negative return that will not be exceeded within this month with a 95% probability: 

𝑝𝑟𝑜𝑏[𝑟𝑒𝑡𝑢𝑟𝑛𝑡 < −𝑉𝑎𝑅𝑡| Ω𝑡] = 𝜃 (6) 

VaR can be estimated dynamically based on Equation (7): 

𝑉𝑎𝑅̂𝑖,𝑡 =  𝜇̂𝑖,𝑡 + 𝜎̂𝑖,𝑡|𝑡−1𝐹(1 − 𝜃)−1 (7) 

where 𝜎̂𝑖,𝑡|𝑡−1 is the conditional standard deviation given the information at 𝑡 − 1, 𝐹−1 is the 

inverse probability density function of a skewed normal distribution and 𝜇̂𝑖,𝑡 is the mean returns 

of institution i at time t. For simplicity, 𝜇̂𝑖,𝑡 is estimated using the overall sample mean instead 

of a rolling window, as its effect on the overall variation in VaR is very limited. Following 

Kuester et al. (2006), we model 𝜎̂𝑖,𝑡 by extracting the conditional standard deviation from a 

GARCH model. This procedure captures the time-varying volatility of returns and significantly 

improves the responsiveness of VaR to shifts in the return process. For most of our return series, 

we empirically observe that negative returns at time 𝑡 − 1 impact the variance at time 𝑡 more 

strongly than positive returns (leverage effect). To reflect this effect, we apply the threshold 
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GARCH model of Glosten et al. (1993) presented in Equation (8). This is the simplest 

asymmetric GARCH specification, which seems appropriate given our relatively small sample. 

We confirm that the parameter 𝛾 in Equation (8) is positive for 257 financial institutions and 

positive and significant at the 10% level for 111 series out of 332. 

𝜎̂𝑖,𝑡
2 =  𝜔 + (𝛼 + 𝛾𝕀𝑡−1)𝜀𝑡−1

2 +  𝛽𝜎̂𝑖,𝑡−1
2  (8) 

𝕀𝑡−1 = {
0, 𝑟𝑡−1 <  𝜇
1, 𝑟𝑡−1 ≥  𝜇

  

All the parameters (𝜇, 𝜔, 𝛼, 𝛾, and 𝛽) are estimated simultaneously, by maximizing the log-

likelihood. 

Table 2 tests the ability of our model to fit the data and capture tail risk. In Panel A, we 

present the Akaike, Bayes, Shibata, and Hannan Quinn information criteria for different model 

specification and error distribution assumptions. We show that the GJR-GARCH model of 

Glosten et al. (1993) fits the data best compared to alternatives. This finding is consistent with 

the work of Brownlees et al. (2011), which shows that the GJR-GARCH model works best to 

forecast stock volatility. Since we are primarily interested in tail risk measurement, we now 

turn our attention to the result of the VaR exceedance tests presented in Panel B. The 

unconditional coverage test of Kupiec (1995) assesses whether the observed frequency of VaR 

exceedances is consistent with expected exceedances. The conditional coverage test of 

Christoffersen et al. (2001) complements the previous test by considering the potential 

dependence between the occurrences of exceedances. Finally, the test of Christoffersen and 

Pelletier (2004) focuses on the duration between VaR exceedances. We show that the GJR-

GARCH model seems appropriate to reflect the level of tail risk of financial institutions. 

Potential alternatives would be the exponential GARCH model of Nelson (1991) or the 

component GARCH of Engle and Lee (1999). Interestingly, although the skew-normal 

distribution is not the best fit for the distribution of the data as a whole (panel A), it is more 
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effective than most other distributions in fitting tail behavior (Panel B). In particular, the skew-

normal distribution is associated with the lowest standard deviation around the expected number 

of exceedances for our sample of return series. It also leads to the lowest number of rejections 

in the Christoffersen et al. (2001) test. Our result is in line with Brownlees et al. (2011) who 

mention that despite the prevalence of fat-tailed financial returns, they find no advantage in 

using heavier-tailed error distribution. Overall, our results are robust to other GARCH 

specifications and assumptions on the error distribution. 

2.3. Factor construction 

The climate finance literature has suggested several approaches to building climate risk 

indicators. Ardia et al. (2021) and Engle et al. (2020) apply natural language processing to 

assess the degree of media attention to climate change from newspapers. Choi et al. (2020) rely 

on Google trends. Brière and Ramelli (2021) construct a climate stress indicator using investor 

flows toward sustainable ETFs. Finally, some articles explore investors’ attention to climate 

risks by building long-short portfolios based on market and environmental variables (e.g., 

Görgen et al., 2020; Hsu, et al., 2022). We follow this last approach and construct two climate 

risk factors using a large sample of dead and alive European stocks (excluding financial sector 

companies). The factors are based on long-short mimicking portfolios following the standard 

approach in the asset pricing literature (e.g., Fama and French, 1993, 2015). Since we are 

interested in extreme climate risks and for consistency with the first step, we estimate the VaR 

of each climate risk factor based on a GARCH model, as described in Section 2.1. 
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In the case of transition risks, the long and short positions are determined by their carbon 

emission intensity.3 We use both reported and estimated emissions, Scopes 1 & 2, divided by 

net sales, from Refinitiv Datastream. To mitigate correlation with existing factors (see Table 

3), the transition risk factor is constructed using six value-weighted portfolios formed on market 

capitalization (B for “Big”, S for “Small”, see Equation 9), book-to-market (H for “High”, L 

for “Low”), and the two lowest and highest deciles of carbon emissions (G for “Green”, B for 

“Brown”). We disentangle “Big” and “Small” firms, as well as “High” and “Low” firms based 

on the median value of the market capitalization and the book-to-market in our sample. 

𝐵𝑀𝐺𝑡 =
𝐿𝐵𝑡 + 𝐻𝐵𝑡 + 𝑆𝐵𝑡 + 𝐵𝐵𝑡

4
−

𝐿𝐺𝑡 + 𝐻𝐺𝑡 + 𝑆𝐺𝑡 + 𝐵𝐺𝑡

4
 (9) 

where 𝐵𝑀𝐺, which stands for “Brown-minus-Green”, represents the returns of the transition 

risk factor, 𝐿𝐵, 𝐻𝐵, 𝑆𝐵, 𝐵𝐵 are the returns of the brown portfolios, 𝐿𝐺, 𝐻𝐺, 𝑆𝐺, and 𝐵𝐺 are 

the returns of the green portfolios, and t represents monthly observations. Even if carbon 

emission data are updated at a yearly frequency, the portfolios are rebalanced monthly 

according to the previous month’s value of the respective characteristics. We only include in 

the portfolios the stocks for which all data are available. In 2005, data were available for about 

400 European non-financial stocks, compared to 2,070 in 2022. Our study starts in 2005 

because there is not enough data available on CO2 emissions before this date. 

In the case of physical risks, we sort firms based on the physical scores provided by Trucost. 

In contrast with 𝐵𝑀𝐺, the correlation between the physical climate factor and the “value” factor 

(𝐻𝑀𝐿) is naturally low (see Table 3), so we only filter portfolios based on market capitalization. 

 
 

3 As pointed out by Giglio et al. (2021), measuring transition risk using carbon emissions is the most common 

approach, even if other possibilities exist. We choose to use carbon emissions because it is a “fundamental” 

measure of transition risk (as opposed to firm-level scores capturing transition risk via an aggregation of different 

data sources on “fundamentals”). 
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Therefore, the physical climate factor is built using four value-weighted portfolios formed on 

size (B for “Big”, S for “Small”) and the two lowest and highest deciles of Trucost physical 

scores (V for “Vulnerable”, S for “Safe”): 

𝑉𝑀𝑆𝑡 =
𝑆𝑉𝑡 + 𝐵𝑉𝑡

2
−

𝑆𝑆𝑡 + 𝐵𝑆𝑡

2
 

(10) 

where  𝑉𝑀𝑆 stands for “Vulnerable-minus-Safe”, the returns of the physical risk factor, 𝑆𝑉 and 

𝐵𝑉 are the returns of the vulnerable portfolios, 𝑆𝑆 and 𝐵𝑆 are the returns of the safe portfolios, 

and t represents monthly observations. As for 𝐵𝑀𝐺, the allocation of 𝑉𝑀𝑆 is rebalanced on a 

monthly basis, but the physical scores are fixed over time. As a result, all portfolios are 

constructed from a sample of 2,237 European non-financial stocks. 

2.4. Data sources 

From Refinitiv Datastream, we obtain an initial list of over 21,805 active and dead European 

stocks (including members of the European Union, Norway, Switzerland, and the United 

Kingdom) for which we download a large set of financial variables in euros, such as prices 

(including dividends), market capitalizations, book values of equity, cash holdings, total assets, 

incomes, net sales, and fixed assets.4 We compute log returns from the available price series 

(17,454) and apply several filters recommended by Landis and Skouras (2021) to deal with 

implausible returns, illiquidity, and unusually high or low volatility. First, we eliminate from 

our sample the series for which more than 95% of the returns have the same sign (positive or 

negative). Second, we discard the series for which more than 25% of the returns are equal to 

 
 

4 For prices, we use the following function on Datastream (“DPL#(X(RI)~E,9)”), which allows us to obtain enough 

decimal digits to avoid confusing small returns with illiquidity. 
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zero, as this is a sign of illiquidity. Finally, we eliminate stocks for which the monthly standard 

deviation of returns is greater than 40% or less than 0.01%. 

Based on this dataset, we select financial institutions according to the Refinitiv Datastream 

sector denomination (Banks, Life Insurance, Nonlife Insurance, Financial Services, Real Estate 

Investment and Services, and Real Estate Investment Trusts). Similar to other articles (see e.g., 

Acharya et al., 2017; Engle et al., 2015), we focus on large financial institutions, as these 

institutions are the primary sources of systemic risk. More precisely, we include all financial 

institutions in Europe with a market capitalization greater than 100 million euros as of June 

2022. Our final sample consists of 332 financial institutions, including 119 banks, 10 life 

insurance companies, 29 non-life insurance companies, 86 financial services companies, 65 real 

estate investment and services firms (REIS), and 23 real estate investment trusts (REITs). 

We download several financial and environmental variables for this sample of financial 

institutions (see the list and definitions in Appendix A). Financial variables, Scope 1 & 2 carbon 

emissions and variables on environmentally responsible initiatives and board member 

incentives are from Refinitiv Datastream. Physical risk scores are downloaded from Trucost. 

Finally, we use Scope 3 carbon emissions from Carbone 4, which estimates the indirect 

emissions of financial institutions mainly originating from their investment and loan portfolios.5  

To construct climate risk factors, we only keep the stocks for which information on climate 

risks (carbon emissions or physical scores), as well as other relevant financial information 

(market capitalization, book-to-market, and net sales) are available. We download Fama and 

French (2015) and Carhart (1997) factors from Kenneth French website. The European Fama 

 
 

5 For example, for the banks, Scope 3 emissions mainly correspond to emissions linked to corporate financing, 

property investments, and loans granted to clients. For real estate activities, Scope 3 emissions are estimated from 

the energy consumed in the operation of buildings owned or managed by the company. 
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and French (2015) factors comprise the market factor (𝑀𝐾𝑇, returns of the European market 

portfolio minus the risk-free rate), the Small-minus-Big factor (𝑆𝑀𝐵) based on market 

capitalization, the High-minus-Low factor (𝐻𝑀𝐿) based on book-to-market, the Robust-minus-

Weak factor (𝑅𝑀𝑊) based on profitability, the Conservative-minus-Aggressive factor (𝐶𝑀𝐴) 

based on investment profile. Carhart (1997) also proposes the Winner-minus-Loser factor 

(𝑊𝑀𝐿), which captures a momentum effect. For consistency with the transformation applied 

for climate risk factors and financial institutions’ stock returns, we focus on the tail risk of each 

of these factors. 

Besides, we construct several market stress factors. We download the risk reversal on the 

USD/EUR options from Bloomberg (𝑅𝑅), for which a negative value implies that expectations 

are skewed towards a depreciation of the euro. Then, we build a series of fixed income spreads. 

The 3-month Euribor rate against the OIS represents interbank market liquidity (𝐼𝑀). The 10-

year against the 2-year euro area interest rates captures the slope of the yield curve (𝑌𝐶). The 

10-year German sovereign bond rate against an average of Greece, Ireland Italy, Spain, and 

Portugal 10-year rates reflects the divergence in rates between countries of the North and the 

South of the Euro Area (𝑁𝑆). The high yield euro corporate rates against the 3-month Euribor 

rate represents the default premium (𝐷𝑃). Lastly, we use an economic sentiment (𝐸𝑆) indicator 

based on surveys from Eurostat. In the regressions, a positive coefficient associated with one 

of these variables indicates that a deterioration in the indicator leads to an increase in systemic 

risk. Additional information on data sources is available in Appendix A. 

2.5. Descriptive statistics 

Table 3 reports the correlation matrix between our tail climate risk factors, 𝐵𝑀𝐺 (transition 

risk factor) and 𝑉𝑀𝑆 (physical risk factor), the five factors of Fama and French (2015), the 
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momentum factor of Carhart (1997), and several market stress factors. Overall, the correlation 

of climate risk factors with existing factors is low. 𝐵𝑀𝐺 is slightly correlated with 𝑊𝑀𝐿, 𝐶𝑀𝐴, 

and 𝐻𝑀𝐿, at 23%, 21%, and -20%, respectively. 𝑉𝑀𝑆 is moderately correlated with 𝐸𝑆 and 

𝑀𝐾𝑇, at 24% and 21%, respectively. The highest correlations among risk factors are between 

𝐸𝑆 and 𝐻𝑀𝐿, 𝐸𝑆 and 𝑀𝐾𝑇, as well as 𝑅𝑀𝑊 and 𝐻𝑀𝐿, at 63%, 48%, and 47%, respectively. 

The correlation between 𝐵𝑀𝐺 and 𝑉𝑀𝑆 amounts to 8%. 

In Table 4, Panels A and B report the characteristics of the factor constituents. As of 2022, 

the 𝐵𝑀𝐺 factor comprises 414 brown firms and 414 green firms. We observe a high sector 

concentration in both the long and short portfolio allocations. For example, the personal goods 

industry, a low-carbon sector, is most represented in the green portfolio, while the oil and gas 

production industry, a very carbon-intensive sector, is most often found in the brown portfolio. 

We also note that the divergence in firm size between the green and brown portfolios is 

relatively small compared to the difference in carbon intensity. The weighted average market 

capitalization amounts to €19,115 million (€10,703 million) for the brown (green) portfolio, 

while the weighted average carbon intensity is 618% (0.28%).  

As of 2022, the 𝐵𝑀𝐺 factor comprises 421 firms that are vulnerable to physical risk and 

490 firms that are deemed safe. The weighted average market capitalization amounts to €9,293 

million (€1,786 million) for the vulnerable (safe) portfolio. The vulnerable (safe) portfolio has 

an average physical risk score of 62 (32).6 To alleviate the effect of the size divergences, we 

control for market capitalization in the construction of the 𝐵𝑀𝐺 and 𝑉𝑀𝑆 factors (see Equation 

 
 

6 This score goes from 0 (extremely low risk) to 100 (extremely high risk). We use the Composite Moderate 2050 

score, representing the physical risk exposure at the horizon of 2050 if climate change is moderate (Representative 

Concentration Pathway 4.5).When considering the totality of European firms covered by Trucost, the median 

Composite Moderate 2050 score is 49, while the 25th (75th) percentile equals 39 (57). 
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9).Table 5 presents the descriptive statistics of the 332 European financial institutions included 

in our sample. The average (median) market capitalization of our institutions is €914 million 

(€816 million), with an average net income to total assets ratio of 0.025 (median = 0.010), an 

average market-to-book of 1.291 (median = 1.004), an average beta of 0.831 (median = 0.780), 

and an average Scope 3 emissions (in tons) to sales (in thousand euros) of 6.907 (median = 

3.512). In addition, 26.7% of our institution-year observations voluntarily disclose their Scope 

1 and/or Scope 2 emissions. 

3. Empirical results 

3.1. Measure of systemic risk  

Figure 1 represents our time-varying systemic risk indicator (Ω̂1) from February 2005 to 

April 2022. Ω̂1 captures common variations in financial institutions’ tail risk. Large increases 

in systemic risk occurred after the bankruptcy of Lehman Brothers in September 2008, during 

the July-August 2011 eurozone stock market crash, after the Brexit referendum in June 2016, 

and the European Covid-19 outbreak in March 2020. Compared to the global financial crisis in 

2008, the Covid-19 shock led to a more sudden increase in market volatility, which explains 

that the extremum is reached during the Covid-19 outbreak. Table 1 shows that most financial 

institutions contribute positively to systemic risk. Among the top 30 contributors, banks are the 

most represented institutions (19 of 30). Interestingly, the ranking of the most interconnected 

institutions shows notable differences when we estimate the dependence between returns or tail 

risk measures. While real estate companies are absent from the sample based on returns, five 

real estate institutions appear in the ranking based on tail risks. In addition, whereas 10 

insurance companies are gathered in the sample based on returns, only 2 emerge when tail risks 

are considered. 
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3.2. Individual exposures of financial institutions to tail climate risks 

Figure 2 plots the distribution of transition and physical risk exposures of financial 

institutions estimated in Equation (4). We observe that the distribution of transition risk 

exposures is skewed to the right, indicating that there is a larger proportion of financial 

institutions with high transition risk exposures. The same is true for physical risk exposures but 

to a lesser extent. 

Table 6 presents the 30 largest individual exposures to tail transition risk. Among the 30 

financial institutions, 13 are from the United Kingdom. The largest exposure is Bank of Ireland 

with a coefficient of 3.36, meaning that if transition risk worsens by one percentage point, the 

VaR of Bank of Ireland will deteriorate by 3.36 percentage points. On average within this group, 

a one percentage point decrease in the VaR of the transition risk factor leads to a 1.51 percentage 

point decline in the VaR of the financial institutions. This group comprises 8 financial 

institutions with a market capitalization above €10 billion, including 3 life insurers (Aviva, 

Legal and General, Prudential), 3 non-life insurers (AXA, Sampo, Swiss Re), and 2 banks 

(Barclays and Lloyds Banking Group). 

Table 7 reports the 30 largest exposures to tail physical risk. Among these 30 largest 

exposures, 8 are Norwegian institutions. The Norwegian financial services provider Aker has 

the largest exposure to physical risk, with an individual VaR worsening by 2.69 percentage 

points when physical risk deteriorates by one point. Among the 30 most vulnerable financial 

institutions, the mean exposure is equal to 0.86. This group only comprises 1 financial 

institution with a market capitalization above €10 billion (Swedbank). We also find a relative 

overrepresentation of REITs in the largest exposures to tail physical risk, with 4 out of the 23 

REITs in our sample being among the 30 largest exposures to tail physical risk. The mean 

exposure of these 4 REITs is equal to 1.15. One possible explanation is that REITs tend to have 
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more tangible assets compared to other financial institutions, and are therefore more vulnerable 

to asset destructions stemming from extreme climate events. 

3.3. The effect of tail climate risks on systemic risk 

In Table 8, we examine whether tail climate risks significantly contribute to tail dependence 

among financial institutions, after taking into account several factors known to be predictors of 

systemic risk. We start by running time-series regressions of Ω̂1, our indicator of systemic risk 

capturing common time variations in the VaR of financial institutions, on climate risk factors 

(𝐵𝑀𝐺 for transition risk and 𝑉𝑀𝑆 for physical risk, see Panel A). In column (1), we observe a 

positive and significant impact of transition risks on systemic risk, after controlling for 𝑀𝐾𝑇, 

𝑆𝑀𝐵, and 𝐻𝑀𝐿 factors, while physical risks have no significant effect. We confirm these results 

when we add controls for (i) 𝑅𝑀𝐵, 𝐶𝑀𝐴, and 𝑊𝑀𝐿 (column 2), (ii) various market stress 

indicators (𝑅𝑅, 𝑀𝐿, 𝐷𝑃, 𝑌𝐶, 𝑁𝑆, 𝐸𝑆 in column 3), and all control variables together (column 

4). Finally, in column 5, we include industry fixed effects and validate the previous findings. 

For ease of interpretation, we change the sign of some variables so that a positive coefficient 

always indicates that a degradation in the indicator is associated with an increase in systemic 

risk. We note that most of the market stress indicators are positively associated with systemic 

risk.  

Next, we carry out a cross-sectional analysis (Panel B) to check whether the financial 

institutions most exposed to climate risks (𝛽̂𝐵𝑀𝐺 and 𝛽̂𝑉𝑀𝑆) contribute more to the tail 

dependence in the financial sector (Χ̂1), after controlling for the exposures to other risk factors. 

Again, we find positive and significant coefficients associated with the exposure to transition 

risks, while the exposure to physical risks does not seem to affect financial institutions’ 

contribution to global risk. The results are robust to the inclusion of fixed effects for country 
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and financial industry, as well as clustered standard errors. Interestingly, the sign and degree of 

significance of the coefficients of the time series and cross-sectional regressions are not always 

in line, as illustrated by the effect of 𝑀𝐿, the interbank market liquidity indicator, which only 

appears significant in the cross-sectional regressions. This discrepancy indicates that the two-

pass regression procedure is useful to ensure robustness of the results. 

Overall, our findings indicate that transition risks significantly contribute to systemic risk, 

both in the time series and the cross section dimensions. On the contrary, physical risks do not 

appear to impact systemic risk.7  

3.4. Individual characteristics of financial institutions and tail climate risks 

In this section, we investigate which institution-level characteristics are associated with tail 

climate risks. We report our results in Table 9 in the case of tail transition risks. We start by 

regressing our measure of tail transition risks on the natural logarithm of market capitalization, 

net income, market-to-book, cash, equity beta, as well as country and industry fixed effects. 

Our results, reported in column (1), indicate that market capitalization and equity beta are 

positively associated with individual tail transition risk, while transition risk exposure is 

negatively correlated with cash levels.8 We then augment our regressions with additional 

characteristics. We first investigate the impact of Scope 3 CO2 emissions (CO2 emissions 

indirectly emitted by the financial institutions, primarily through their investment and loan 

 
 

7 Contrary to carbon emissions in the case of transition risk, there is no raw indicator consensually capturing 

physical risk. Therefore, we rely on third-party physical risk ratings to construct our physical risk factor. We 

acknowledge this could impact our findings on physical risk.  
8 In July 2022, the European Central Bank (ECB) released the results of its climate risk stress test, conducted on a 

sample of 41 large banks. Consistent with our finding of a positive association between financial institutions’ 

market capitalization and their exposure to transition risk, the ECB states that “the most emitting sectors […] tend 

to be dominated by large companies (proxied by the size of revenues) which may be more likely to enter into 

relationships with larger banks.” See here. 

https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.climate_stress_test_report.20220708~2e3cc0999f.en.pdf


   
 
 

23 

 

 

portfolios). We find that higher Scope 3 emissions intensity is positively associated with 

transition risk exposures (column 2). We then assess the association between transition risks 

and financial institutions’ commitment to managing environmental issues in project financing, 

as proxied by being an Equator Principles signatory. Our results indicate that financial 

institutions managing environmental issues in project financing tend to have lower transition 

risk exposures (column 3). In column (4), we investigate the relationship between the long-term 

incentives given to board members and transition risks. We find that exposures to transition 

risks are significantly lower when board members have long-term incentives.9 

In Table 10, we examine which institution-level characteristics correlate with higher 

exposure to physical risks. Financial institutions with higher exposures to physical risks have a 

lower market capitalization, higher cash holdings, and lower equity beta (column 1). As with 

transition risks, physical risks tend to be lower for institutions committing to managing 

environmental issues in project financing (column 2) and giving long-term incentives to board 

members and executives (column 3). 

These findings suggest that the characteristics of financial institutions exposed to tail 

transition risks are different from those of institutions exposed to physical risks. However, 

financial institutions tend to have lower exposure to both transition and physical risks when 

they commit to taking environmental considerations, or more broadly long-term considerations, 

into account. 

 
 

9 These results are related to the findings of the climate risk stress test conducted by the ECB (see here). The ECB 

indicates that many financial institutions should improve their governance to increase their resilience to climate 

risks (see in particular Chart 4), and that “most banks still do not have clearly specified long-term strategies for 

dealing with the green transition.” 

https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.climate_stress_test_report.20220708~2e3cc0999f.en.pdf
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3.5. Tail climate risks and environmental disclosure policies 

According to previous results, tail transition risks influence systemic risk within the 

financial sector. In this section, we thus investigate whether financial institutions take action to 

adapt to tail climate risks. More specifically, we assess the impact, if any, of tail climate risks 

on carbon disclosure policies. Our results are reported in Table 11. In column (1), we start by 

regressing 𝐶𝑂2 𝑑𝑖𝑠𝑐𝑙𝑜𝑠𝑢𝑟𝑒, a dummy variable equal to one if the financial institution reports 

Scope 1 and/or Scope 2 emissions, on our measure of transition risk, after controlling for the 

natural logarithm of market capitalization, net income, market-to-book, cash, beta, as well as 

year fixed effects. All our control variables are lagged by one year to mitigate potential 

endogeneity issues. Then, in columns (2) and (3), we add country and industry fixed effects to 

control for time-invariant industry and country characteristics. Across our specifications, our 

findings indicate a positive and significant effect of tail transition risks on the disclosure of CO2 

emissions, after controlling for various determinants of CO2 emissions disclosure. A one 

standard deviation increase in tail transition risks is associated with a 2.6 to 3.2 percentage point 

increase in the probability to disclose CO2 emissions, corresponding to a 10 to 11% increase 

from the mean. However, our findings could be biased by endogeneity. Omitted time-invariant 

institution characteristics might bias our results. In column (4), we thus recompute our transition 

risk measure estimated in Equation (4) on 3-year intervals. Having multiple transition risk 

scores per financial institution allows us to confirm the positive impact of transition risks after 

the inclusion of financial institution fixed effects. Another endogeneity concern is reverse 

causality. To mitigate this concern, we implement an instrumental variable approach, in which 

we instrument our 3-year transition score by the average 3-year transition score within the same 

sector-year group, the underlying assumption being that peer institutions’ transition risk does 

not influence the carbon disclosure decisions of the focal firm. Our results are reported in 
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columns (5) and (6) and indicate that a one-standard-deviation increase in transition risk 

increases by 6.4 percentage points the probability to disclose carbon emissions.  

Overall, our results indicate that tail transition risks positively impact the propensity of 

financial institutions to engage in carbon disclosure. 

4. Conclusion 

In this paper, we develop a new framework for analyzing systemic climate risks based on 

environmental and stock market data. This framework aims to identify the institutions that are 

the most vulnerable to climate risks and assess whether climate risks can exacerbate tail risk 

dependence within the financial sector. We apply our approach to a sample of Europe’s largest 

financial institutions. We find that many financial institutions are positively and significantly 

exposed to climate risks and show that transition climate risks can exacerbate tail dependence 

among financial institutions, which is a key aspect of systemic risk. By contrast, we do not find 

evidence of such spillovers in the case of physical climate risks.  

Studying the institution-level characteristics associated with climate risks, we find that 

climate risk exposure is lower for financial institutions committed to environmental risk 

management and for those providing long-term incentives to board members. Our findings also 

highlight that financial institutions with cleaner investment and lending portfolios tend to be 

less exposed to transition risks. Finally, our results reveal that financial institutions are more 

prone to disclosing carbon emissions when they are more exposed to transition risks. In a 

nutshell, our findings suggest that managers of financial institutions have levers to reduce 

systemic climate risks. However, our analysis is silent on the tradeoff that might exist between 

the reductions in climate risk exposures and the potential costs of implementing these actions. 

The characteristics we find associated with climate risk might be of interest for microprudential 
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supervision. Furthermore, our findings regarding tail dependence also suggest that financial 

supervisors might want to consider integrating transition risk into their macroprudential 

oversight.  

Our results must be interpreted with some caution, as they primarily reflect the extent to 

which investors perceive the effect of climate risks on financial stability. We argue that this 

perception is critical for financial institutions because the threat that climate risks pose to 

financial stability depends largely on investors' repricing of financial assets. Moreover, our 

proposed market-based framework is more responsive than other accounting-based models and 

could be used to dynamically monitor the prevalence of systemic climate risks. As a result, our 

findings could also be used as inputs in the development of climate scenarios and assumptions 

about the future impact of climate risks on asset prices. Finally, the framework we design in 

this paper is flexible and could be applied to other countries, industries, asset types, or time 

periods. It could also be used to assess the influence of other emerging threats to financial 

stability, such as cybersecurity risk, provided that series representing time variations in the risk 

source in question are available. 
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Figure 1 

Time variations in systemic risk from February 2005 to April 2022. 

The indicator represents the first principal component Ω̂1, extracted from Equations (2) and (3), 

and accounts for the common variations in the VaR of financial institutions. 
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Figure 2 

Distribution of climate risk exposures for financial institutions. 

The figure represents the distribution of the vectors of financial institutions’ exposures to 

climate risks 𝛽̂𝐵𝑀𝐺 and 𝛽̂𝑉𝑀𝑆 estimated in Equation (4) by replacing Ω̂1 with the time variations 

in the VaR of financial institutions. 
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Table 1 

Most interconnected institutions based on VaR and returns. 

This table reports a list of the most interconnected institutions based on VaR and returns using 

the loading of each financial institution Χ̂1 on the first principal component Ω̂1. The acronyms 

REITs and REIS stand for “Real Estate Investment Trusts” and “Real Estate Investment 

Services”, respectively. 

Top 30 contributors to Systemic Risk 

based on VaR measures 

Top 30 contributors to Systemic Risk  

based on stock returns 

Financial institutions Sector Χ̂1 Financial institutions Sector Χ̂1 

Banco Santander Banks 8,3% Banco Santander Banks 7,8% 

Bank Polska Kasa Opieki Banks 8,4% Barclays Banks 7,6% 

Barclays Banks 8,3% BBVA Banks 7,6% 

BBVA Banks 8,1% BNP Banks 7,8% 

BNP Banks 7,9% Credit Agricole Banks 8,0% 

CRCAM de Normandie Banks 8,7% DNB Bank Banks 7,8% 

Credit Agricole Banks 8,2% Erste Group Bank Banks 8,1% 

Erste Group Bank Banks 9,2% KBC Ancora Banks 7,7% 

Intesa Sanpaolo Banks 8,3% KBC Group Banks 7,5% 

Investec Banks 8,4% Lloyds Banking Group Banks 7,5% 

Jyske Bank Banks 7,9% Nordea Bank Banks 7,9% 

Komercni Banka Banks 8,0% OTP Bank Banks 7,5% 

Nordea Bank Banks 8,8% Societe Generale Banks 8,3% 

PKO Bank Banks 8,1% Unicredit Banks 7,7% 

Societe Generale Banks 8,8% Eurazeo Financial Services 8,2% 

Sparebank 1 Helgeland Banks 8,2% GBL New Financial Services 8,1% 

Sparebank 1 SMN Ords Banks 8,7% Industrivarden A Financial Services 7,7% 

Unicredit Banks 8,0% Intermediate Capital Group Financial Services 7,7% 

Vontobel Holding Banks 8,2% Peugeot Invest Financial Services 7,8% 

Eurazeo Financial Services  8,5% Wendel Financial Services 8,3% 

Intermediate Capital Group Financial Services  8,2% Aviva Life Insurance 7,6% 

Peugeot Invest Financial Services  8,7% Legal and General Life Insurance 8,1% 

Wendel Financial Services  8,4% Prudential Life Insurance 7,6% 

CNP Assurances Life Insurance 8,7% Swiss Life Holding Life Insurance 7,5% 

Storebrand Life Insurance 7,9% Allianz Nonlife Insurance 7,8% 

Nexity REIS 7,9% AXA Nonlife Insurance 8,0% 

Olav Thon Eiendomsselskap REIS 8,0% Helvetia Holding N Nonlife Insurance 7,7% 

Hammerson REITS 8,1% Mapfre Nonlife Insurance 7,4% 

Land Securities Group REITS 8,2% Sampo 'A' Nonlife Insurance 8,0% 

Unibail Rodamco REITS 7,9% Vienna Insurance Group A Nonlife Insurance 7,7% 
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Table 2 

Model selection. 

This table performs diagnostic tests for model selection and error distribution assumptions (see 

Equation 8). Panel A reports the information criteria of Akaike, Bayes, Shibata, and Hannan 

Quinn. Panel B runs the VaR exceedance tests: the UC test of Kupiec (1995), the CC test of 

Christoffersen et al. (2001), and the Duration test of Christoffersen and Pelletier (2004). GJR-

GARCH, E-GARCH, NA-GARCH, and C-GARCH respectively stand for the model of Glosten 

et al. (1993), the Exponential GARCH model of Nelson (1991), the Nonlinear Asymmetric 

GARCH model of Engle and Ng (1993), and the component GARCH of Engle and Lee (1999). 

 

Panel A: Information criteria 

Model 
Error  

distribution 
Akaike Bayes Shibata Hannan Quinn 

GJR-GARCH 

Normal 6,925 7,006 6,924 6,958 

Skew-normal 6,909 7,005 6,908 6,948 

Student 6,820 6,917 6,819 6,859 

Skew-student 6,816 6,929 6,814 6,862 

Generalized error 6,814 6,910 6,812 6,852 

Skew-generalized error 6,818 6,931 6,816 6,864 

Normal inverse gaussian 6,823 6,935 6,820 6,868 

Generalized Hyperbolic 6,827 6,955 6,824 6,878 

Johnson’s SU 6,818 6,931 6,816 6,864 

GARCH 

Skew-normal 

6,943 7,023 6,942 6,976 

GJR-GARCH 6,909 7,005 6,908 6,948 

E-GARCH 6,923 7,019 6,921 6,961 

NA-GARCH 7,216 7,312 7,214 7,255 

CS-GARCH 6,956 7,068 6,954 7,001 
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Panel B: VaR exceedance tests 

Model 
Error  

distribution 

Expected 

VaR 5% 

exceed 

Realized 

VaR 5% 

exceed 

Standard 

deviation 

around 10 

Number of rejections 

VaR UC 

test 

VaR CC 

test 

VaR 

Duration 

test 

GJR-GARCH 

Normal 10 10,33 2,67 3 7 9 

Skew-normal 10 9,72 2,31 6 4 12 

Student 10 11,34 3,59 8 11 11 

Skew-student 10 10,77 2,83 2 5 6 

Generalized error 10 10,67 5,88 14 14 13 

Skew-generalized error 10 9,64 2,71 5 9 9 

Normal inverse Gaussian 10 10,03 2,41 2 5 9 

Generalized Hyperbolic 10 12,44 8,01 25 25 17 

Johnson’s SU 10 10,40 2,90 2 5 9 

GARCH 

Skew-normal 

10 9,90 2,40 5 16 8 

GJR-GARCH 10 9,72 2,31 6 4 12 

E-GARCH 10 9,48 2,25 2 6 8 

NA-GARCH 10 10,14 9,97 6 13 9 

CS-GARCH 10 10,08 2,38 1 6 11 
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Table 3 

Correlation matrix for risk factors.  

This table presents the correlation matrix among risk factors. Appendix A presents variable 

definitions.  

 BMG VMS MKT SMB HML RMW CMA WML RR ML DP YC NS 

VMS 8%             

MKT 2% 21%            

SMB 7% 6% 12%           

HML -20% 10% 38% 10%          

RMW 1% -5% 32% 6% 47%         

CMA 21% 17% 32% 11% -1% 15%        

WML 23% 15% 27% 12% 21% 23% 16%       

RR -4% -13% 3% 2% 14% 11% -11% 11%      

ML -5% -6% 30% 15% 10% 31% 13% 11% 12%     

DP -1% 12% 41% 4% 5% 16% 30% 1% -31% 15%    

YC -2% 10% 1% 0% 2% 1% 0% 0% -2% 13% 4%   

NS -4% 16% 16% -4% 17% -4% 1% 8% -6% 3% -1% 19%  

ES -6% 24% 48% 19% 63% 11% 12% 19% -4% 6% 21% 0% 17% 
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Table 4 

Descriptive statistics of climate risk factor constituents.  

This table reports the summary statistics of the climate risk factor constituents. Panel A presents 

the descriptive statistics for observations used in the transition risk factor. The transition risk 

factor is constructed as a long-short portfolio based on estimated carbon emission data (scopes 

1 & 2) for all dead and alive stocks reported in Refinitiv Eikon and listed on European equity 

markets (excluding financial sector companies) between 2005 and 2022. The portfolio is long 

on the high climate risk firms (>80th percentile) and short on the low climate risk firms (<20th 

percentile).  

Panel A: Transition risk factor 

Sectors 

Number of firms % in portfolio 

Average market 

capitalization (in 
million euros) 

Average CO2 

emissions (scopes 1 & 
2), in tons 

Average carbon 
intensity (Ratio of 

scope 1 & 2 

emissions to sales) 
Low 

climate 

risk 

High 

climate 

risk 

Low 

climate 

risk 

High 

climate 

risk 

Low 

climate 

risk 

High 

climate 

risk 

Low 

climate 

risk 

High 

climate risk 

Low 

climate 

risk 

High 

climate 

risk 

Aerospace and Def. 1 1 0.0% 0.2% 222 4,708 700 164,478 0.42% 655% 

Alternative Energy 5 6 0.6% 0.1% 3,035 327 10,856 389,836 0.27% 1105% 

Automobiles  3 0.0% 0.2%  1,626  446,032  22% 

Beverages 1 1 0.1% 0.0% 2,471 593 88 70,292 0.02% 15% 

Chemicals  27 0.0% 7.8%  7,750  3,932,167  62% 

Construction and Mat. 7 15 0.1% 2.2% 491 4,000 4,038 2,556,202 0.34% 144% 

Electricity 4 35 0.5% 15.3% 2,817 11,679 1,207 10,411,782 0.12% 141% 

Electronic Equipment 7 1 0.2% 0.1% 654 1,935 1,881 485,900 0.39% 41% 

Fixed Line Telecom. 7 7 1.7% 0.7% 5,683 2,492 10,713 353,920 0.30% 45% 

Food and Drug Retail 7  1.3% 0.0% 4,286  14,334  0.27%  

Food Producers 1 17 0.1% 1.0% 2,615 1,611 1,970 7,547,522 0.28% 680% 

Forestry and Paper 1 14 0.0% 1.8% 181 3,460 0 1,237,697 0.00% 59% 

Gas, Water 1 12 0.0% 7.8% 740 17,428 1,842 24,236,625 0.51% 118% 

General Industrials 2 18 0.3% 2.0% 3,294 2,927 7,725 2,668,725 0.49% 52% 

General Retailers 37 2 5.3% 0.0% 3,382 575 10,926 174,412 0.27% 21% 

Health Care 13 5 2.0% 0.6% 3,719 3,465 3,517 183,066 0.28% 38% 

Household Goods 9 2 0.8% 0.1% 2,034 710 5,293 174,499 0.31% 27% 

Industrial Engineering 3 1 0.6% 0.0% 4,957 156 26,792 26,760 0.35% 20% 

Metals and Mining  17 0.0% 1.7%  2,711  5,989,661  13872% 

Industrial Transport. 7 30 1.5% 4.0% 5,204 3,550 31,017 2,431,281 0.32% 169% 

Leisure Goods 4  0.2% 0.0% 1,211  819  0.24%  

Media 32 1 5.3% 1.3% 3,916 35,388 6,940 114,084 0.29% 37% 

Mining  36 0.0% 11.2%  8,295  3,162,160  2369% 

Oil and Gas Prod.  41 0.0% 26.3%  17,112  7,072,139  121% 

Oil Equipment 2 17 0.2% 1.9% 2,639 2,955 290 938,869 0.10% 113% 

Personal Goods 13 3 28.0% 0.1% 50,977 554 44,366 963,673 0.29% 29% 

Pharmaceuticals 12 9 10.2% 2.0% 20,230 5,827 8,767 100,642 0.22% 62% 

Software 108 4 12.7% 0.2% 2,777 1,020 3,091 1,241,990 0.32% 1138% 

Support Services 21 6 1.7% 0.4% 1,902 1,793 6,334 574,565 0.23% 53% 

Technology Hardware 14 3 2.4% 0.1% 4,061 1,328 11,540 217,997 0.27% 34% 

Travel and Leisure 15 31 2.1% 3.6% 3,240 3,111 7,804 2,634,532 0.25% 105% 

Unclassified 80 49 22.1% 7.4% 6,550 4,032 6,718 8,025,306 0.27% 209% 

Total 414 414 100% 100% 19,115 10,703 17,895 7,136,674 0.28% 618% 
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Panel B presents the descriptive statistics for observations used in the physical risk factor. The 

physical risk factor is constructed as a long-short portfolio based on Trucost physical climate 

risk scores for all dead and alive stocks reported in Refinitiv Eikon and listed on European 

equity markets (excluding financial sector companies) between 2005 and 2022. The portfolio 

is long on the high climate risk firms (>80th percentile) and short on the low climate risk firms 

(<20th percentile). 

Panel B: Physical risk factor 

Sector 

Number of stocks % of portfolio 
Average market capitalization  

(in million euros) 

Average physical 

score 
 (moderate 2050) 

Low 

climate 

risk 

High 

climate 

risk 

Low 

climate 

risk 

High 

climate 

risk 

Low  

climate risk 

High 

climate risk 

Low 

climate 

risk 

High 

climate 

risk 

Aerospace and Defense 2 7 0,8% 1,9% 2 319 5 305 31 62 

Alternative Energy 4 6 0,6% 0,0% 785 138 35 67 

Automobiles and Parts 6 1 1,1% 0,0% 995 1 33 73 

Beverages 8 4 2,3% 0,1% 1 606 742 33 65 

Chemicals 7 10 0,6% 5,1% 458 10 147 33 62 

Construction and Materials 19 18 2,2% 1,3% 635 1 460 33 62 

Electricity 8 2 0,7% 0,8% 467 7 948 32 62 

Electronic and Electrical Equipment 5 3 0,9% 0,0% 1 022 320 31 68 

Fixed Line Telecommunications 6 4 2,2% 0,7% 2 004 3 715 27 60 

Food and Drug Retailers 4 2 1,6% 0,1% 2 161 552 33 65 

Food Producers 20 16 6,3% 0,7% 1 731 880 31 64 

Forestry and Paper 5 3 2,2% 0,2% 2 455 1 404 32 61 

Gas, Water and Multiutilities  3 0,0% 0,5%  3 544  63 

General Industrials 13 11 1,1% 1,2% 473 2 193 32 63 

General Retailers 25 8 5,4% 0,1% 1 176 207 33 62 

Health Care Equipment and Services 20 11 5,6% 3,1% 1 522 5 527 33 61 

Household Goods and Home Construction 16 7 3,3% 0,2% 1 126 504 33 62 

Industrial Engineering 14 7 4,0% 0,8% 1 560 2 209 34 63 

Industrial Metals and Mining 7 6 0,8% 0,1% 598 490 30 63 

Industrial Transportation 18 15 15,6% 4,7% 4 759 6 238 33 64 

Leisure Goods 6 4 0,2% 0,3% 202 1 406 32 62 

Media 5 25 0,1% 5,0% 110 3 996 30 62 

Mining 19 22 0,4% 0,1% 118 104 32 63 

Oil and Gas Producers 12 9 2,7% 13,0% 1 232 28 821 32 64 

Oil Equipment and Services 7 6 0,4% 0,2% 292 568 30 65 

Personal Goods 3 8 0,9% 0,7% 1 691 1 644 35 64 

Pharmaceuticals and Biotechnology 42 24 6,8% 14,8% 892 12 245 31 62 

Software and Computer Services 39 37 6,0% 9,1% 836 4 888 31 61 

Support Services 11 14 1,6% 4,3% 772 6 042 34 61 

Technology Hardware and Equipment 25 16 1,9% 4,7% 427 5 875 32 62 

Travel and Leisure 15 21 5,6% 2,8% 2 056 2 606 32 61 

Unclassified 99 91 16,1% 23,3% 888 5 095 31 62 

Total 490 421 100% 100% 1 786 9 293 32 62 
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Table 5 

Descriptive statistics of financial institutions.  

This table reports the summary statistics of the financial institutions in our sample. Appendix 

A presents variable definitions. The sample comprises all European financial institutions from 

2005 to 2022, with a market capitalization above €100 million as of June 2022.  

 N Mean SD Median P25 P75 

𝛽̂𝑉𝑀𝑆 5,757 0.017 0.500 -0.004 -0.166 0.142 

𝛽̂𝐵𝑀𝐺  5,757 0.177 0.572 0.051 -0.039 0.341 

LogMarketValue 5,757 6.818 1.860 6.705 5.451 8.012 

NetIncome 5,757 0.025 0.058 0.010 0.004 0.041 

MtoB 5,757 1.291 1.095 1.004 0.668 1.526 

Cash 5,757 0.088 0.134 0.035 0.011 0.107 

Beta 5,757 0.831 0.558 0.780 0.392 1.180 

Scope3 Emissions 1,959 6.907 8.062 3.512 0.853 11.327 

Equator Principles Signatory 2,637 0.100 0.301 0.000 0.000 0.000 

Board LT incentives 5,624 0.033 0.179 0.000 0.000 0.000 

CO2 Disclosure 5,757 0.267 0.442 0.000 0.000 1.000 
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Table 6 

Transition risk exposures. 

This table presents the Top 30 institutions with large and significant exposures to 𝐵𝑀𝐺𝑡, our 

transition risk factor. Heteroskedasticity-robust standard errors are reported in parentheses. ***, 

**, and * indicate significance at the 1%, 5% and 10% levels, respectively. The acronyms 

REITs and REIS stand for “Real Estate Investment Trusts” and “Real Estate Investment 

Services”, respectively. The Code corresponds to the Datastream symbol. 

Financial institutions Code Sector Country 𝛽̂𝐵𝑀𝐺  

Banca Carige I:CRG Banks Italy 1.80*      (0.92) 

Bank of Ireland Group IE:BIRG Banks Ireland 3.36***  (1.15) 

Barclays BARC Banks United Kingdom 1.05***  (0.37) 

Lloyds Banking Group LLOY Banks United Kingdom 1.49**    (0.68) 

Permanent TSB Group Holdings IE:IL0A Banks Ireland 1.81*      (0.97) 

Sparebanken Vest N:SVEG Banks Norway 1.10*      (0.64) 

Brewin Dolphin BRW Financial Services United Kingdom 1.13*      (0.58) 

Hellenic Exchanges Holdings G:HEL Financial Services Greece 1.32*      (0.72) 

Intermediate Capital Group ICP Financial Services United Kingdom 1.67***  (0.63) 

Lebon F:LBON Financial Services France 1.18**    (0.52) 

Saint James's Place  STJ Financial Services United Kingdom 1.03**    (0.42) 

Aviva AV. Life Insurance United Kingdom 1.15**    (0.52) 

Legal and General LGEN Life Insurance United Kingdom 1.50***  (0.53) 

Prudential PRU Life Insurance United Kingdom 1.01*      (0.56) 

AXA F:MIDI Nonlife Insurance France 1.51**    (0.65) 

FBD Holdings IE:EG7 Nonlife Insurance Ireland 1.34*      (0.77) 

Sampo 'A' M:SAMA Nonlife Insurance Finland 0.92**    (0.39) 

Swiss Re S:SREN Nonlife Insurance Switzerland 1.51*      (0.79) 

Boot (Henry) BOOT REIS United Kingdom 2.70***  (0.89) 

Echo Investment PO:ECH REIS Poland 1.15*      (0.69) 

Grainger GRI REIS United Kingdom 1.29**    (0.64) 

JM W:JMBF REIS Sweden 1.80**    (0.80) 

Nexity F:NXI REIS France 1.38**    (0.65) 

Risanamento I:RN REIS Italy 1.73*      (0.93) 

British Land BLND REITs United Kingdom 1.01***  (0.38) 

Carmila F:CARM REITs France 3.17*      (1.88) 

Land Securities Group LAND REITs United Kingdom 0.93**    (0.37) 

Unibail Rodamco  H:UBL REITs France 1.24***  (0.41) 

Unite Group UTG REITs United Kingdom 1.45**    (0.69) 
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Table 7 

Physical risk exposures. 

This table presents the Top 30 institutions with large and significant exposures to 𝑉𝑀𝑆𝑡, our 

physical risk factor. Heteroskedasticity-robust standard errors are reported in parentheses. ***, 

**, and * indicate significance at the 1%, 5% and 10% levels, respectively. The Code 

corresponds to the Datastream symbol. 

Financial institutions Code Sector Country 𝛽̂𝑉𝑀𝑆 

Aareal Bank D:ARL Banks Germany 1.01**    (0.44) 

Investec INVP Banks United Kingdom 0.66***  (0.13) 

Sandnes Sparebank N:SADG Banks Norway 1.32***  (0.49) 

Sparebank 1 Helgeland N:HELG Banks Norway 0.19***  (0.06) 

Sparebank 1 Nord-Norge N:NONG Banks Norway 0.33**    (0.13) 

Sparebank 1 SMN Ords N:MING Banks Norway 0.44***  (0.17) 

Sparebanken More N:MORG Banks Norway 0.24*      (0.09) 

Sparebanken Vest N:SVEG Banks Norway 1.38**    (0.58) 

Swedbank A W:SWED Banks Sweden 0.44***  (0.17) 

Vseobec Uver Bank SK:VUB Banks Slovakia 0.47**    (0.23) 

Aker N:AKER Financial Services Norway 2.69***  (0.89) 

Gimv B:GIM Financial Services Belgium 0.16*      (0.09) 

Impax Asset Management Group IPX Financial Services United Kingdom 0.36**    (0.16) 

Oresund Investment W:ORF Financial Services Sweden 0.56**    (0.25) 

Ratos B W:RTBF Financial Services Sweden 0.18*      (0.09) 

Saint James's Place  STJ Financial Services United Kingdom 0.64*      (0.33) 

Personal Group Holdings PGH Nonlife Insurance United Kingdom 0.27**    (0.13) 

Castellum W:CAST REIS Sweden 0.30***  (0.10) 

Deutsche Euroshop D:DEQ REIS Germany 1.91***  (0.54) 

Fastighets Balder B W:BALB REIS Sweden 0.16**    (0.07) 

JM W:JMBF REIS Sweden 1.05***  (0.34) 

Nexity F:NXI REIS France 0.58**    (0.28) 

Olav Thon Eiendomsselskap N:OLT REIS Norway 0.45***  (0.13) 

Risanamento I:RN REIS Italy 1.29**    (0.58) 

Retail Estates B:RET REITs Belgium 1.48*      (0.77) 

Unibail Rodamco  H:UBL REITs France 1.32***  (0.42) 

Warehouses de Pauw B:WDP REITs Belgium 0.13*      (0.07) 

Wereldhave Belgium B:WEHB REITs Belgium 1.68*      (0.88) 
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Table 8 

Determinants of systemic risk. 

This table presents the determinants of systemic risk. Panel A presents the time-series analysis, 

as described in Equation (4). We use Ω̂1, the systemic risk measures derived from the first 

principal component defined in Equation (2), as the dependent variable. Newey-West standard 

errors are reported in parentheses. ***, **, and * indicate significance at the 1%, 5% and 10% 

levels, respectively. In the regressions, a positive coefficient associated with one of the 

explicative variables indicates that a deterioration in the indicator leads to an increase in 

systemic risk. 

 

Panel A: Time-series analysis 

VARIABLES 
(1) (2) (3) (4) 

Ω̂1 Ω̂1 Ω̂1 Ω̂1 

BMG 2.333*** 1.878*** 2.181* 1.442*** 

 (0.692) (0.634) (1.173) (0.518) 

VMS 1.070 0.831 1.146 0.288 
 (1.022) (0.860) (0.779) (0.424) 

MKT 3.296*** 3.213***  2.667*** 

 (0.369) (0.440)  (0.443) 

SMB 5.675*** 5.363***  3.091** 

 (1.724) (1.633)  (1.400) 

HML 6.736*** 6.810***  2.373* 

 (2.736) (2.275)  (1.325) 

RMW  -1.851  3.644 

  (3.955)  (2.617) 

CMA  0.394  0.288 

  (0.666)  (0.418) 

WML  0.542**  0.493*** 

  (0.249)  (0.174) 

RR   2.088*** -0.128 

   (0.585) (0.416) 

ML   32.297 6.035 

   (20.273) (5.411) 

DP   0.943** -0.827** 

   (0.477) (0.340) 

YC   -0.289 0.541 

   (1.331) (0.844) 

NS   3.155** 0.428 

   (1.503) (1.147) 

ES   2.229*** 1.295*** 
   (0.206) (0.199) 

Constant -0.060 -0.066 -0.063 -0.055 

 (0.289) (0.274) (0.316) (0.238) 

Observations 207 207 207 207 

R-squared 0.805 0.812 0.684 0.893 

Adjusted R-squared 0.800 0.804 0.671 0.885 
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Panel B and C present the cross-sectional analysis, as described in Equation (5). The dependent 

variable Χ̂1 represents the loadings of each financial institution on Ω̂1. The explicative variables 

are the coefficients 𝛽̂ extracted from Equation (4) when we replace Ω̂1 by the VaR of each 

financial institution. In Panel B, White heteroskedasticity-robust standard errors are reported in 

parentheses. In Panel C, we include industry and country fixed effects and report clustered 

standard errors. 

Panel B: Cross-sectional analysis  

VARIABLES 
(1) (2) (3) (4) 

Χ̂1 Χ̂1 Χ̂1 Χ̂1 

𝛽̂𝐵𝑀𝐺 0.007** 0.005** 0.005** 0.005** 

 (0.003) (0.003) (0.002) (0.003) 

𝛽̂𝑉𝑀𝑆 -0.001 0.003 0.001 -0.004 

 (0.003) (0.003) (0.003) (0.003) 

𝛽̂𝑀𝐾𝑇 0.029*** 0.024***  0.032*** 

 (0.004) (0.005)  (0.004) 

𝛽̂𝑆𝑀𝐵 0.003** 0.002*  -0.001 

 (0.001) (0.001)  (0.001) 

𝛽̂𝐻𝑀𝐿 0.009*** 0.012***  0.007*** 

 (0.002) (0.002)  (0.003) 

𝛽̂𝑅𝑀𝑊  0.001  0.001 

  (0.001)  (0.001) 

𝛽̂𝐶𝑀𝐴  0.001  0.009*** 

  (0.003)  (0.002) 

𝛽̂𝑊𝑀𝐿  0.027***  0.003 

  (0.007)  (0.006) 

𝛽̂𝑅𝑅   -0.002 -0.008*** 

   (0.002) (0.003) 

𝛽̂𝑀𝐿   0.0005*** 0.0004** 

   (0.0002) (0.0002) 

𝛽̂𝐷𝑃   0.005* -0.014*** 

   (0.003) (0.003) 

𝛽̂𝑌𝐶   0.002 -0.002 

   (0.002) (0.002) 

𝛽̂𝑁𝑆   0.001 -0.004*** 

   (0.001) (0.001) 

𝛽̂𝐸𝑆   0.078*** 0.042*** 

   (0.009) (0.009) 

Constant 0.019*** 0.018*** 0.021*** 0.012*** 
 (0.003) (0.003) (0.003) (0.003) 

Observations 332 332 332 332 

R-squared 0.262 0.285 0.254 0.389 

Adjusted R-squared 0.250 0.268 0.236 0.362 
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Panel C: Cross-sectional analysis with fixed effects and clustered standard errors 

VARIABLES 
(1) (2) (3) 

Χ̂1 Χ̂1 Χ̂1 

𝛽̂𝐵𝑀𝐺 0.006* 0.005* 0.006** 

 (0.003) (0.003) (0.002) 

𝛽̂𝑉𝑀𝑆 -0.002 -0.002 -0.001 

 (0.002) (0.004) (0.003) 

𝛽̂𝑀𝐾𝑇 0.029*** 0.030*** 0.026*** 

 (0.001) (0.005) (0.002) 

𝛽̂𝑆𝑀𝐵 0.0002 -0.001 0.0003 

 (0.001) (0.001) (0.002) 

𝛽̂𝐻𝑀𝐿 0.006 0.006** 0.006 

 (0.003) (0.003) (0.003) 

𝛽̂𝑅𝑀𝑊 0.001 0.001 0.001 

 (0.001) (0.001) (0.002) 

𝛽̂𝐶𝑀𝐴 0.009*** 0.008*** 0.008*** 

 (0.002) (0.002) (0.002) 

𝛽̂𝑊𝑀𝐿 0.003 0.003 0.004 

 (0.005) (0.008) (0.009) 

𝛽̂𝑅𝑅 -0.008** -0.009** -0.010*** 

 (0.002) (0.004) (0.002) 

𝛽̂𝑀𝐿 0.0004 0.0003 0.0003 

 (0.0002) (0.0002) (0.0003) 

𝛽̂𝐷𝑃 -0.012** -0.012** -0.011** 

 (0.003) (0.004) (0.003) 

𝛽̂𝑌𝐶 -0.001 -0.002 -0.0005 

 (0.002) (0.002) (0.002) 

𝛽̂𝑁𝑆 -0.004*** -0.004*** -0.004*** 

 (0.001) (0.001) (0.001) 

𝛽̂𝐸𝑆 0.045*** 0.044*** 0.046*** 

 (0.011) (0.012) (0.011) 

Observations 332 332 332 

R-squared 0.424 0.432 0.470 

Adjusted R-squared 0.389 0.356 0.389 

FE : Country No Yes Yes 

FE : Industry Yes No Yes 
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Table 9 

Tail transition risk and characteristics of financial institutions. 

This table presents the characteristics associated with financial institutions’ exposures to 

climate transition risks, 𝛽̂𝐵𝑀𝐺, estimated from Equation (4) by replacing Ω̂1 with the VaR of 

each financial institution. Appendix A presents variable definitions. Heteroskedasticity-robust 

standard errors are reported in parentheses. ***, **, and * indicate significance at the 1%, 5% 

and 10% levels, respectively.  

VARIABLES 
(1) (2) (3) (4) 

𝛽̂𝐵𝑀𝐺 𝛽̂𝐵𝑀𝐺 𝛽̂𝐵𝑀𝐺 𝛽̂𝐵𝑀𝐺 

Log MarketValue 0.0207*** 0.0324*** 0.0430*** 0.0218*** 

 (0.00495) (0.0115) (0.00998) (0.00510) 

NetIncome -0.268 -0.276 0.0953 -0.250 

 (0.174) (0.502) (0.230) (0.177) 

MtoB 0.00527 -0.0210 0.0255** 0.00668 

 (0.00795) (0.0162) (0.0121) (0.00803) 

Cash -0.127* -0.492** 0.233* -0.119* 

 (0.0658) (0.197) (0.120) (0.0674) 

Beta 0.0702*** 0.0870*** 0.0786*** 0.0801*** 

 (0.0180) (0.0285) (0.0268) (0.0184) 

Scope3 Emissions  0.00514**   

  (0.00203)   

Equator Principles Signatory   -0.0828**  

   (0.0326)  

Board LT incentives    -0.122*** 

    (0.0396) 

Constant -0.207*** -0.494*** -0.775*** -0.239*** 
 (0.0774) (0.0991) (0.115) (0.0792) 

Observations 5,757 1,959 2,637 5,624 

R-squared 0.172 0.301 0.275 0.175 

Adjusted R-squared 0.167 0.292 0.266 0.170 

FE : Country Yes Yes Yes Yes 

FE : Industry Yes Yes Yes Yes 
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Table 10 

Tail physical risk and characteristics of financial institutions. 

This table presents the characteristics associated with financial institutions’ exposures to 

physical climate risk, 𝛽̂𝑉𝑀𝑆, estimated from Equation (4) by replacing Ω̂1 with the VaR of each 

financial institution. Appendix A presents variable definitions. Heteroskedasticity-robust 

standard errors are reported in parentheses. ***, **, and * indicate significance at the 1%, 5% 

and 10% levels, respectively. 

VARIABLES 
(1) (2) (3) 

𝛽̂𝑉𝑀𝑆 𝛽̂𝑉𝑀𝑆 𝛽̂𝑉𝑀𝑆 

Log MarketValue -0.0111*** -0.0372*** -0.0103** 

 (0.00430) (0.00776) (0.00451) 

NetIncome -0.0440 0.191 -0.0626 

 (0.130) (0.199) (0.133) 

MtoB -0.00181 0.0180* 0.000390 

 (0.00662) (0.00991) (0.00668) 

Cash 0.255*** -0.00129 0.235*** 

 (0.0620) (0.0718) (0.0623) 

Beta -0.0747*** -0.0984*** -0.0692*** 

 (0.0160) (0.0213) (0.0161) 

Equator Principles Signatory  -0.112***  

  (0.0338)  

Board LT incentives   -0.129*** 

   (0.0389) 

Constant 0.299*** 0.689*** 0.289*** 

 (0.0504) (0.0749) (0.0519) 

Observations 5,757 2,637 5,624 

R-squared 0.171 0.247 0.173 

Adjusted R-squared 0.166 0.238 0.168 

FE : Country Yes Yes Yes 

FE : Industry Yes Yes Yes 
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Table 11 

Tail climate risk and carbon disclosure. 

This table presents estimates of the effect of tail climate transition risk on carbon disclosure. In 

columns (1) to (3), 𝛽̂𝐵𝑀𝐺 is a static institution-level measure of tail transition risk.  In columns 

(4) to (6), 𝛽̂𝐵𝑀𝐺 is an institution-level measure of tail transition risk defined on three-year 

windows.   Regressions (1) to (4) use a linear probability model. Regressions (5) and (6) use 

2SLS regressions, where the average value of 𝛽̂𝐵𝑀𝐺 at the sector-year level is used as an 

instrument for 𝛽̂𝐵𝑀𝐺 in the first stage. Appendix A presents variable definitions. Standard errors 

are clustered at the financial institution level and reported in parentheses. ***, **, and * indicate 

significance at the 1%, 5% and 10% levels, respectively. 

VARIABLES 

(1) (2) (3) (4) (5) (6) 

CO2 Disclosure 

(t) 

CO2 Disclosure 

(t) 

CO2 Disclosure 

(t) 

CO2 Disclosure 

(t) 

CO2 Disclosure 

(t) 

CO2 Disclosure 

(t) 

 Linear Probability Model 2SLS 

𝛽̂𝐵𝑀𝐺 0.0553** 0.0485*** 0.0453** 0.00838* 0.113** 0.112** 

 (0.0227) (0.0187) (0.0188) (0.00429) (0.0446) (0.0444) 

LogMarketValue (t-1) 0.120*** 0.121*** 0.117*** 0.0286** 0.0379*** 0.0251* 

 (0.00563) (0.00552) (0.00571) (0.0117) (0.0132) (0.0149) 

NetIncome (t-1) -0.00697 -0.120 -0.0394 0.0746 -0.0556 -0.0328 

 (0.131) (0.117) (0.113) (0.0975) (0.147) (0.147) 

MtoB (t-1) -0.00175 -0.0195** -0.0163* -0.0185* -0.0350*** -0.0304** 

 (0.0121) (0.00971) (0.00875) (0.0102) (0.0132) (0.0140) 

Cash (t-1) 0.0177 -0.0274 0.141* 0.0230 0.0285 0.0222 

 (0.0811) (0.0722) (0.0722) (0.0679) (0.0682) (0.0682) 

Beta (t-1) 0.114*** 0.0958*** 0.108*** 0.0271 0.0244 0.0171 

 (0.0212) (0.0199) (0.0196) (0.0200) (0.0233) (0.0236) 

Constant -0.710*** -0.810*** -0.778*** 0.0505 -0.0875 0.0992 
 (0.0455) (0.0508) (0.0634) (0.0830) (0.123) (0.105) 

Observations 5,454 5,454 5,454 5,454 5,454 5,454 

R-squared 0.417 0.481 0.496 0.653   

FE : Country No Yes Yes No Yes No 

FE : Financial Institution No No No Yes No Yes 

FE : Industry No No Yes No Yes No 

FE : Year Yes Yes Yes Yes Yes Yes 

  



   
 
 

50 

 

 

Appendix A. Variable definitions 

Variable Description 

Beta 
 

BMG 

 
 

 

Board LT incentives 
 

 

Cash 
 

 

CMA 
 

 

DP 
 

 

Equator Principles 
 

ES 
 

HML 

 
 

LogMarketValue 

 
MKT  

 

 
ML 

 

 

MtoB 

 

 
NetIncome 

 

NS 
 

 

RMW 
 

 

RR 
 

Scope3 Emissions 

 
 

SMB 

 

 

VMS 

 
 

 

 
 

WML 

 
 

YC 

 
 

Equity beta (897E in Datastream). 
 

Transition risk factor, constructed as a long-short portfolio based on estimated carbon emission data (scopes 

1 & 2) for all dead and alive stocks reported in Refinitiv Eikon and listed on European equity markets 
(excluding financial sector companies). 

 

Dummy variable equal to one if board members have long-term compensation incentives (from 
CGCPDP052 in Refinitiv ESG). 

 

Ratio of cash (item WC02005 in Worldscope Datastream) to total assets (item WC02999 in Worldscope 
Datastream). 

 

Difference between the returns on portfolios of low and high investment stocks (Conservative-Minus-
Aggressive factor) from Kenneth French website library. 

 

Default premium computed as the spread between the ICE high yield euro corporate rates against the 3-
month Euribor rate (Fred database). 

 

Dummy variable equal to one if the financial institution has signed (from ENPIDP036 in Refinitiv ESG). 
 

Economic Sentiment indicator (Eurostat). 
 

Difference between the returns on portfolios of high and low book-to-market stocks (High-Minus-Low 

factor) from Kenneth French website library. 
 

Natural logarithm of market capitalization (item MV in Datastream, expressed in million euros). 

 
Difference between the returns on the market portfolio and the risk-free rate (Market factor) from Kenneth 

French website library. 

 
Interbank Market Liquidity indicator, calculated as the spread between the 3-month Euribor rate against the 

equivalent Overnight Indexed Swap rate.  

 

Ratio of market value of equity (item MV in Datastream, expressed in million euros) to book value of equity 

(item WC03501 in Worldscope Datastream, expressed in thousand euros, multiplied by 1,000).  

 
Ratio of net income (item WC01751 in Worldscope Datastream) to total assets (item WC02999). 

 

North-South spread, computed as the difference between the 10-year German sovereign bond rate against 
an average of Greece, Ireland, Italy, Spain, and Portugal 10-year rates (European Central Bank). 

 

Difference between the returns of robust and weak stocks (Robust-Minus-Weak factor) from Kenneth 
French website library. 

 

Risk Reversal on the USD/EUR options from Bloomberg. 
 

Ratio of Scope3 emissions in tons (from Carbone 4) to sales (WC01001 in Worldscope Datastream, 

expressed in thousand euros). 
 

Difference between the returns on portfolios of small and large stocks (Small-Minus-Big factor) from 

Kenneth French website library. 

 

Physical risk factor, constructed as a long-short portfolio based on Trucost physical climate risk scores for 

all dead and alive stocks reported in Refinitiv Eikon and listed on European equity markets (excluding 
financial sector companies). We use the firm-level composite physical risk score from Trucost, which 

aggregates the scores of seven hazards (coldwave, flood, heatwave, hurricane, sea-level rise, water stress, 

wildfire) using a 2050-horizon moderate-intensity climate change scenario. 
 

Difference between the returns on portfolios of past winner and past loser stocks (Momentum factor) from 

Kenneth French website library. 
 

Yield Curve indicator, computed as the spread between 10-year and 2-year Euro Area composite rates 

(European Central Bank). 
 

 


