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Abstract 
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1. Introduction 

The aim of this study is to introduce a simple no-arbitrage approach to pricing 

single-name credit risky securities. Presently, the two possible approaches are structural 

and reduced-form models. While they are conceptually different, they both rely on 

modeling risk-neutral default probabilities, or hazard rates.  

In structural models, default occurs the first time that the firm asset value crosses 

a critical lower bound or default barrier.1 Structural models are theoretically appealing 

because they provide economic reasoning for the event of default based on fundamentals. 

Unfortunately, the latent nature of most of the variables and parameters involved (e.g., 

firm asset value and volatility) makes these models challenging to implement in practice. 

Moreover, even if we were to ignore this problem, replicating the observed market prices 

of credit risky securities may require a very elaborate model that incorporates, among 

other elements, stochastic firm asset volatility and jumps (Du, Elkamhi, and Ericsson, 

2019).  

In reduced-form models, default is governed by an exogenous hazard rate process 

that determines the default probability at each point in time, conditional on no-previous 

default. The observed market prices of credit risky securities are then used to calibrate 

this hazard rate process under the risk-neutral probability measure, in such a way that it 

can be finally applied in the pricing of other credit risky positions.2 This sensible approach 

                                                           
1 A non-exhaustive list of structural models would include the seminal work of Merton (1974), in addition 
to Black and Cox (1976), Leland (1994), Longstaff and Schwartz (1995), Leland and Toft (1996), and, 
more recently, Du, Elkamhi, and Ericsson (2019). 
2 Reduced-form models were initiated by Jarrow and Turnbull (1995) and followed, among others, by 
Jarrow, Lando and Turnbull (1997), Lando (1998), and Duffie and Singleton (1999). A detailed description 
of both structural and reduced-form models can be found in Duffie and Singleton (2003), Schönbucher 
(2003), Lando (2004), and O’Kane (2008). Madan and Unal (2000) represents an example of a hybrid 
(structural hazard rate) model. 
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has its costs. First, an exogenous hazard rate process needs to be assumed. Second, the 

price of each credit risky security must be derived as an explicit function of the 

corresponding risk-neutral hazard rate process. In practice, this does not need to be a 

simple task. Finally, because each security’s price is a non-trivial function of the risk-

neutral hazard rate process, its calibration based on actual market prices requires the 

implementation of root-search algorithms. Despite these challenges, reduced-form 

models represent the fastest and most accurate approach available at this moment to mark-

to-market credit risky positions. 

The method proposed in this study draws on three main elements. First, the price 

of most single-name credit risky securities can be expressed as a simple function of three 

well-established building blocks, or credit risk discount factors (CRDF), initially defined 

in Lando (1998). Among those securities are credit default swaps (CDS) contracts with 

different maturities. Second, in a discrete time economy, a set of no-arbitrage conditions 

can be derived between the value of those CRDF for any two consecutive maturities and 

possible defaulting times. The assumption of a discrete time economy is, thus, critical but 

not restrictive, as the time interval can be arbitrarily small. The sole condition is that it is 

strictly positive. Finally, if CDS spreads are available with maturities fitting all future 

time periods, then a system of equations exists that allows the bootstrap of such CRDF 

for all possible maturities. Practically, a sensible implementation of the method is 

achieved by assuming an economy with a daily time interval and that a term structure of 

CDS spreads (TSCDS) with corresponding maturities exists that fits the result of a linear 

interpolation between observable CDS spreads.  

The main advantage of the proposed method—that avoids the estimation of risk-

neutral default probabilities or hazard rates—lies precisely on its simplicity. As 
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previously said, the prices of the most common single-name credit risky securities (e.g., 

bonds, CDS, and forward CDS) are simple functions of the CRDF and, as this study 

shows, the same simple structure applies for the no-arbitrage conditions between those 

CRDF. This implies that both the bootstrapping process and the posterior mark-to-market 

of other credit risky positions are particularly easy to implement. Specifically, the 

bootstrapping procedure is based on explicit closed-form solutions and does not involve 

any root-search algorithm.  

A brief description of the most relevant applications of this method is provided. 

These include the mark-to-market of CDS positions, the pricing of risky bonds, and the 

pricing of forward CDS contracts. A less obvious but important application is the time 

decomposition of CDS spreads, discussed in more detail. The possible extension to 

portfolio management is also analyzed. Finally, the practical implementation of the 

method is illustrated with a case study: the time decomposition of sovereign CDS spreads 

during the Eurozone crisis.  

The remainder of this paper is organized as follows. Section 2 defines the basic 

setting and introduces the no-arbitrage conditions between CRDF. Section 3 reviews the 

pricing of CDS contracts. Section 4 incorporates some additional assumptions and 

describes the bootstrapping process. Section 5 discusses some possible applications, 

including the time decomposition of CDS spreads. Section 6 presents the case study that 

illustrates the practical implementation of the method. A summary of the main 

conclusions is provided in Section 7. 

 

 

 



5 
 
 

2. Basic Setting and No-Arbitrage Conditions between Credit Risk Discount Factors 

2.1. Setting 

 The focus of this study is the pricing of different credit risky assets and associated 

financial derivatives at current (non-defaulting) time 0. With this goal in mind, a simple 

discrete time economy with a daily time interval is assumed. Traded assets include (but 

are not necessarily restricted to) default-free and risky zero-coupon bonds of all possible 

maturities. These maturities are denoted 𝑇𝑇, and correspond to all future calendar dates up 

to time 𝜏𝜏—that is, {∆, 2∆, … , 𝜏𝜏}, with ∆= 1/365. The price of a default-free zero-coupon 

bond with nominal $1 and maturity 𝑇𝑇 is denoted 𝑍𝑍(𝑇𝑇).3 Regarding risky bonds, default 

may happen at any future calendar date and represents an absorbing state. The default 

time is denoted 𝜏𝜏𝑑𝑑, while the minimum between 𝜏𝜏𝑑𝑑 and 𝑇𝑇 is denoted 𝐿𝐿𝑑𝑑𝑇𝑇 . In the event of 

default, bond holders receive (irrespective of the possible coupon) a fraction 𝜃𝜃 of its face 

value and the asset is liquidated. Markets are complete and arbitrage-free.  

2.2. Credit Risk Discount Factors and No-Arbitrage Conditions 

 In our particular setting, the three basic CRDF are defined as follows: 

• 𝐴𝐴(𝑇𝑇): The present value of an asset class 𝐴𝐴 paying a constant annuity of $∆ every ∆ 

years until 𝐿𝐿𝑑𝑑𝑇𝑇  (included).  

• 𝐵𝐵(𝑇𝑇): The present value of an asset class 𝐵𝐵 paying $1 at 𝜏𝜏𝑑𝑑, provided 𝜏𝜏𝑑𝑑 ≤ 𝑇𝑇. 

• 𝐶𝐶(𝑇𝑇): The present value of an asset class 𝐶𝐶 paying $1 at 𝑇𝑇, provided 𝜏𝜏𝑑𝑑 > 𝑇𝑇. 

It is important to stress that, in the case of asset class 𝐴𝐴 with maturity 𝑇𝑇, a default 

time 𝜏𝜏𝑑𝑑 ≤ 𝑇𝑇 implies the cancelation of the periodic stream of payments from 𝜏𝜏𝑑𝑑 + ∆ 

                                                           
3 Because all prices are determined at current time 0, simple notation is used that avoids emphasizing the 
present time 0.  
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onwards. This includes 𝜏𝜏𝑑𝑑 + ∆, but not 𝜏𝜏𝑑𝑑 itself. While such clarification is not necessary 

in a continuous time model (Lando, 1998), it will be a key element in our case. Also, the 

discrete time setting considered in this study allows to introduce a fourth convenient 

CRDF:  

• 𝐷𝐷(𝑇𝑇): The present value of an asset class 𝐷𝐷 paying $1 at 𝑇𝑇, provided 𝜏𝜏𝑑𝑑 > 𝑇𝑇 − ∆. 

Hence, the difference between assets 𝐶𝐶 and 𝐷𝐷 with the same maturity 𝑇𝑇 is that the 

payment of $1 at 𝑇𝑇 is conditional on survival at time 𝑇𝑇 in the case of 𝐶𝐶, and on survival 

at the previous date 𝑇𝑇 − ∆  in the case of 𝐷𝐷.  

Figure 1 depicts the structure of payments associated to the four contingent claims. 

Along with the assumptions made in section 2.1, this structure of payments implies two 

no-arbitrage conditions that must hold for any two consecutive maturities 𝑇𝑇 − ∆ and 𝑇𝑇.  

<Figure 1 about here> 

The first no-arbitrage condition (NAC1) relates 𝐴𝐴(𝑇𝑇), 𝐴𝐴(𝑇𝑇 − ∆) and 𝐷𝐷(𝑇𝑇): 

𝐴𝐴(𝑇𝑇) = 𝐴𝐴(𝑇𝑇 − ∆) + ∆𝐷𝐷(𝑇𝑇), (1) 

with 𝐴𝐴(0) = 0. 

Equation (1) reflects that the present value of a daily annuity of $∆ paid until time 

𝑇𝑇 or default must be equal to the sum of: (a) the present value of a daily annuity of $∆ 

paid until time 𝑇𝑇 − ∆ or default, and; (b) the present value of $∆ paid with certainty at 

time 𝑇𝑇, conditional on no default at time 𝑇𝑇 − ∆ or before. This second component follows 

from the previous remark on the effect of a default event on the payments of an asset class 

𝐴𝐴.  
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The second no-arbitrage condition (NAC2) that must hold for any two consecutive 

maturities 𝑇𝑇 − ∆ and 𝑇𝑇 is as follows: 

𝐶𝐶(𝑇𝑇) + 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆) = 𝐷𝐷(𝑇𝑇), (2) 

with 𝐵𝐵(0) = 0. 

In the left-hand side of Equation (2), 𝐶𝐶(𝑇𝑇) is the present value of $1 paid at time 

𝑇𝑇, conditional on no default at that time or before. Simultaneously, 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆) 

equals the present value of $1 paid at 𝑇𝑇 in the case of default at that precise moment, and 

not before. Taken as a whole, the left-hand side of Equation (2) equals the present value 

$1 paid with certainty at time 𝑇𝑇 conditional on no default at time 𝑇𝑇 − ∆ or before, and 

this is exactly what 𝐷𝐷(𝑇𝑇) in the right-hand side of said equation represents. It is worth 

noting that the combination of Equations (1) and (2) leads to the following related 

condition: 

𝐴𝐴(𝑇𝑇) = 𝐴𝐴(𝑇𝑇 − ∆) + ∆[𝐶𝐶(𝑇𝑇) + 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆)]. (3) 

Equation (3) provides a necessary relationship between the three core CRDF for 

any two consecutive maturities 𝑇𝑇 − ∆ and 𝑇𝑇. An important observation is that this 

equilibrium condition relies only on the structure of payments associated to assets 𝐴𝐴, 𝐵𝐵, 

and 𝐶𝐶 and the assumptions made in section 2.1. In other words, it is not dependent on any 

particular risk-neutral pricing model.4 

3. Pricing Credit Default Swaps with Credit Risk Discount Factors 

The value of a position in a CDS contract with maturity 𝑇𝑇 equals the difference 

between its premium leg and its protection leg. The daily structure of the premium leg is 

                                                           
4 A further intuitive implication of Equation (3) is that 𝐴𝐴(𝑇𝑇) = ∆�∑ 𝐶𝐶(ℎ∆)𝑇𝑇/∆

ℎ=1 + 𝐵𝐵(𝑇𝑇)�. 
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described in Figure 2. This figure reflects a key feature of a CDS contract. Namely, while 

the annual premium per dollar of protected debt, 𝑐𝑐𝑐𝑐𝑐𝑐, is usually paid in quarterly 

installments, the liquidation of the contract in the case of default implies the payment of 

the premium accrued since the last quarterly payment. Therefore, a non-defaulting state 

at a given day implies a consolidated right to accrue ∆𝑐𝑐𝑐𝑐𝑐𝑐 the following day, regardless 

of whether there is a default or not in that posterior day. If we further assume no 

counterparty risk coming from the side of the protection buyer, such consolidated right to 

accrue ∆𝑐𝑐𝑐𝑐𝑐𝑐 can be considered as a risk-free income at a given day, conditional on no 

default at the previous day. Because this structure of payments mimics that of asset 𝐴𝐴, 

scaled by 𝑐𝑐𝑐𝑐𝑐𝑐, the present value of the premium leg is simply:  

𝑋𝑋(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴(𝑇𝑇), (4) 

where the nominal value of the protected bond is normalized to 1. 

<Figure 2 about here> 

The daily structure of the protection leg is shown in Figure 3. At any given day, 

the protection payment is 0 in the case of no default, and a fraction (1 − 𝜃𝜃) of the 

protected bond’s face value in the case of default. Therefore, the payments’ structure of 

the protection leg reproduces that of asset 𝐵𝐵 scaled by (1 − 𝜃𝜃), and the same applies for 

its present value for a nominal of 1: 

𝑌𝑌(𝑇𝑇) = (1 − 𝜃𝜃)𝐵𝐵(𝑇𝑇). (5) 

<Figure 3 about here> 

The value of a long position in the CDS contract is, thus: 
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𝑉𝑉(𝑇𝑇) = (1 − 𝜃𝜃)𝐵𝐵(𝑇𝑇) − 𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴(𝑇𝑇), (6) 

and we obtain the break-even CDS spread, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇), as the spread that satisfies 𝑉𝑉(𝑇𝑇) = 0 

(see also Duffie and Singleton, 2003):  

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) =
(1 − 𝜃𝜃)𝐵𝐵(𝑇𝑇)

𝐴𝐴(𝑇𝑇) . (7) 

4. Additional Assumptions and Bootstrapping of Credit Risk Discount Factors 

All previous results are based on no-arbitrage arguments alone, which implies that 

they do not rely on any particular risk-neutral pricing model. Yet, a convenient additional 

assumption will be that the risk-free interest rate process and the default time 𝜏𝜏𝑑𝑑 are risk-

neutrally independent (Jarrow and Turnbull, 1995; Jarrow, Lando and Turnbull, 1997; 

Duffie and Singleton, 2003). If we denote 𝑆𝑆(𝑇𝑇) the risk-neutral survival probability at 

time 𝑇𝑇 (as seen at current time 0), this new assumption allows to decompose 𝐶𝐶(𝑇𝑇 − ∆) 

and 𝐷𝐷(𝑇𝑇) as follows: 𝐶𝐶(𝑇𝑇 − ∆) = 𝑍𝑍(𝑇𝑇 − ∆)𝑆𝑆(𝑇𝑇 − ∆); and 𝐷𝐷(𝑇𝑇) = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇 − ∆). If we 

further denote 𝑓𝑓(𝑇𝑇 − ∆,𝑇𝑇) ≡ −(1 ∆⁄ )𝑙𝑙𝑙𝑙𝑙𝑙[𝑍𝑍(𝑇𝑇) 𝑍𝑍(𝑇𝑇 − ∆)⁄ ] the forward risk-free rate 

between 𝑇𝑇 − ∆ and 𝑇𝑇, then we obtain: 

𝐷𝐷(𝑇𝑇) = 𝑒𝑒−𝑓𝑓(𝑇𝑇−∆,𝑇𝑇)∆𝐶𝐶(𝑇𝑇 − ∆), (8) 

with 𝐶𝐶(0) = 1.  

Let us now assume that 𝐴𝐴(𝑇𝑇 − ∆), 𝐵𝐵(𝑇𝑇 − ∆), and 𝐶𝐶(𝑇𝑇 − ∆) values are available 

for a given maturity 𝑇𝑇 − ∆. In such a case, and assuming that the forward rate 𝑓𝑓(𝑇𝑇 − ∆,𝑇𝑇) 

is also available, Equations (1), (2), (7) and (8) lead to a system of three equations and 

three unknowns—𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇)—with a simple closed-form solution: 
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𝐴𝐴(𝑇𝑇) = 𝐴𝐴(𝑇𝑇 − ∆) + ∆𝑒𝑒−𝑓𝑓(𝑇𝑇−∆,𝑇𝑇)∆𝐶𝐶(𝑇𝑇 − ∆); (9a) 

𝐵𝐵(𝑇𝑇) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇)𝐴𝐴(𝑇𝑇)

(1 − 𝜃𝜃) ; (9b) 

𝐶𝐶(𝑇𝑇) = 𝐵𝐵(𝑇𝑇 − ∆) − 𝐵𝐵(𝑇𝑇) + 𝑒𝑒−𝑓𝑓(𝑇𝑇−∆,𝑇𝑇)∆𝐶𝐶(𝑇𝑇 − ∆). (9c) 

The solution to this system is in fact trivial and unique. Therefore, provided that a 

TSCDS is available that contains CDS spreads for all possible maturities {∆, 2∆, … , 𝜏𝜏}, it 

would be possible to bootstrap the corresponding term structure of CRDF based on 

Equation (9) and the initial values 𝐴𝐴(0) = 0, 𝐵𝐵(0) = 0, and 𝐶𝐶(0) = 1.5 Unfortunately, 

the actual time interval between the maturity of observable CDS spreads ranges from six 

months to ten years, which clearly exceeds the required interval of one day. However, a 

sensible and practical solution can be obtained by linear interpolating the observed CDS 

spreads.  

Table 1 presents a numerical example.6 It assumes a TSCDS with standard 

maturities of 6m, 1y, 2y, 3y, 4y, 5y, 7y, and 10y. The table also reflects some of the 

interpolated CDS spreads. For the interval (0,6m], it could be presumed either a flat 

TSCDS or the same slope as in the interval [6m,1y]. For this and further examples, the 

latter option is adopted.7 It is also assumed a constant risk-free rate (2% in this case) and 

a recovery rate of 40%. The term structure of CRDF is instantaneously obtained with the 

sole help of a spreadsheet (i.e., no root-search algorithm is required). The outcome for the 

                                                           
5 If so required, the term structure of risk-neutral survival probabilities could be also obtained as a "sub-
product" of the bootstrapping process: 𝑆𝑆(𝑇𝑇) = 𝐶𝐶(𝑇𝑇)/𝑍𝑍(𝑇𝑇). That said, such additional result is not necessary 
for any of the applications considered in the following section. 
6 The Excel file containing this example is available at www.santiagoforte.com. 
7 Caution should be taken to prevent that this interpolation leads to negative CDS spreads in the interval 
(0,6m]. However, this does not happen in any of the cases explored. 
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selected maturities is incorporated into Table 1, while Figure 4 reproduces the full-term 

structure of CRDF. The following section describes only a few of the many possible 

applications of this simple pricing method. 

<Table 1 about here> 

<Figure 4 about here> 

5. Applications 

The most evident application of the term structure of CRDF is the mark-to-market 

of any position in a CDS contract using Equation (6). By extension, this also implies a 

simple approach to estimating CDS returns (Berndt and Obreja, 2010; Augustin, Saleh 

and Xu, 2020). Other possible applications are as follows: 

5.1. Pricing of Risky Bonds 

 Consider a risky bond with coupon 𝑏𝑏, nominal 𝑝𝑝, and maturity 𝑇𝑇. Let us also 

denote 𝑇𝑇𝑚𝑚 the maturity of the 𝑚𝑚th coupon payment, where 𝑚𝑚 = 1, … ,𝑀𝑀, and 𝑇𝑇𝑀𝑀 = 𝑇𝑇. 

The present value of this bond will be: 

𝑑𝑑(𝑇𝑇) = 𝑏𝑏 � 𝐶𝐶(𝑇𝑇𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

+ 𝑝𝑝𝑝𝑝(𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜃𝜃(𝑇𝑇). (10) 

The first term in the right-hand side of previous equation reflects the present value 

of the stream of coupon payments. The second term accounts for the payment of the 

nominal at maturity in the case of no default. Finally, the last term incorporates the present 

value of the fractional recovery of the nominal value in the case of default. 
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5.2. Pricing of Forward CDS 

Now, consider a forward CDS contract signed at current time 0 for credit 

protection between 𝑇𝑇𝑗𝑗 and 𝑇𝑇𝑘𝑘, with 0 ≤ 𝑇𝑇𝑗𝑗 < 𝑇𝑇𝑘𝑘. More precisely, the initiation date is 𝑇𝑇𝑗𝑗 

conditional on 𝜏𝜏𝑑𝑑 > 𝑇𝑇𝑗𝑗, so the first effective date with accrual of premium payments and 

delivery of the bond in exchange of the bond’s face value in the case of default is 𝑇𝑇𝑗𝑗 + ∆. 

The daily structure of this contract is, in fact, the same as already described in Figures 2 

and 3 for a spot contract. The sole difference is that the starting date is now 𝑇𝑇𝑗𝑗 rather than 

0, and the ending date is 𝑇𝑇𝑘𝑘. To derive the present value of the premium leg of the forward 

contract based on the CRDF, let us define (for any 𝑇𝑇∗ and 𝑇𝑇, with 0 ≤ 𝑇𝑇∗ < 𝑇𝑇): 

• 𝐴𝐴(𝑇𝑇∗,𝑇𝑇): The present value of the same asset class 𝐴𝐴 paying a constant annuity of $∆ 

every ∆ years, but this time between 𝑇𝑇∗ and 𝑇𝑇 with the following conditions: (i) the 

first payment is at 𝑇𝑇∗ + ∆, conditional on 𝜏𝜏𝑑𝑑 > 𝑇𝑇∗ (otherwise, the asset is liquidated 

at 𝜏𝜏𝑑𝑑), and; (ii) provided that 𝜏𝜏𝑑𝑑 > 𝑇𝑇∗, the last payment is at 𝐿𝐿𝑑𝑑𝑇𝑇  (included).  

From the definition of 𝐴𝐴(𝑇𝑇) and 𝐴𝐴(𝑇𝑇∗,𝑇𝑇), it holds that 

𝐴𝐴(𝑇𝑇∗,𝑇𝑇) = 𝐴𝐴(𝑇𝑇) − 𝐴𝐴(𝑇𝑇∗), (11) 

and if we use 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to denote the spread of the forward CDS contract described above, 

the present value of the premium leg is: 

𝑋𝑋�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�. (12) 

We can also derive the present value of the protection leg based on the CRDF. Let 

us define: 
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• 𝐵𝐵(𝑇𝑇∗,𝑇𝑇): The present value of the same asset class 𝐵𝐵 paying $1 at 𝜏𝜏𝑑𝑑, provided this 

time that 𝑇𝑇∗ < 𝜏𝜏𝑑𝑑 ≤ 𝑇𝑇. 

From the definition of 𝐵𝐵(𝑇𝑇) and 𝐵𝐵(𝑇𝑇∗,𝑇𝑇), it must hold that 

𝐵𝐵(𝑇𝑇∗,𝑇𝑇) = 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇∗), (13) 

and the present value of the protection leg is: 

𝑌𝑌�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = (1 − 𝜃𝜃)𝐵𝐵�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�. (14) 

The value of a long position in the forward CDS contract is in this way: 

𝐹𝐹𝐹𝐹�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = (1 − 𝜃𝜃)𝐵𝐵�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�. (15) 

By imposing 𝐹𝐹𝐹𝐹�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = 0, we finally obtain the break-even forward CDS spread:  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� =
(1 − 𝜃𝜃)𝐵𝐵�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�

𝐴𝐴�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�
. (16) 

It is worth noting that 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(0,𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇). 

5.3. Time Decomposition of CDS Spreads 

The time decomposition of a CDS spread refers to the problem of determining the 

percentage of the spread that can be reasonably attributed to the protection of specific 

time intervals within the contract’s maturity. Despite its intrinsic interest, this question 

has not received much attention in the academic literature. As shown below, the time 

decomposition of CDS spreads exhibits similarities, but also remarkable differences 

compared to the traditional decomposition of spot (risk-free interest) rates into forward 

rates.  
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In a similar vein to a spot rate decomposition, the time decomposition of CDS 

spreads follows from the possibility of representing a long (short) position in a CDS 

contract as a portfolio of long (short) positions in 𝑁𝑁 consecutive forward CDS contracts. 

If we define 𝑇𝑇0 = 0 and 𝑇𝑇𝑁𝑁 = 𝑇𝑇, then 

𝑋𝑋(𝑇𝑇) = �𝑋𝑋(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

, (17) 

that is, the present value of the cost of credit protection up to time 𝑇𝑇 must be equal to the 

present value of the cost of credit protection for an arbitrary number of consecutive (not 

necessarily identical) time intervals between time 0 and time 𝑇𝑇. Consequently,  

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) = �𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

, (18) 

where 

𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇) =
𝐴𝐴(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)
𝐴𝐴(𝑇𝑇) ∈ [0,1]; (19) 

with 

�𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇) = 1
𝑁𝑁

𝑖𝑖=1

. (20) 

From Equations (18–20), it is concluded that we can divide the maturity 𝑇𝑇 of a 

CDS contract into an arbitrary number of intermediate time intervals and express the 

associated CDS spread as a weighted average of the forward CDS spreads corresponding 

to those timeslots. The weight of a particular forward spread 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖) on the spot 

spread 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) is given by the weight of 𝐴𝐴(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖) into 𝐴𝐴(𝑇𝑇). Among the factors that 
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will influence this ratio (relative time length, time value of money), it is worth 

highlighting the risk of default up to the initiation date 𝑇𝑇𝑖𝑖−1. Other things equal, the higher 

this risk, the lower the present value of any stream of payments in the time interval 

(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖] conditional on no-previous default, and, therefore, the lower the influence of 

the corresponding forward spread on the spot spread. This reflects one main difference 

concerning the time decomposition of spot rates: contrary to the forward rates embedded 

in a spot rate, the forward CDS spreads contained in a CDS spread may never be paid, 

and this will be properly reflected in their weights. In summary, the risk of default will 

enter both the forward spreads and their weights. 

As a corollary to previous results, the level and steepness of the TSCDS will be 

closely related. To see this more clearly, let us consider the following simple 

decomposition:  

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) = �1 −
𝐴𝐴(𝑇𝑇∗,𝑇𝑇)
𝐴𝐴(𝑇𝑇) � 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗) +

𝐴𝐴(𝑇𝑇∗,𝑇𝑇)
𝐴𝐴(𝑇𝑇) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇∗,𝑇𝑇); (21) 

and rearranging terms, 

[𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗)] =
𝐴𝐴(𝑇𝑇∗,𝑇𝑇)
𝐴𝐴(𝑇𝑇)

[𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇∗,𝑇𝑇) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗)]. (22) 

Equation (22) provides an intuitive interpretation of the possible forms of the 

TSCDS (increasing, decreasing, or hump-shaped) and its steepness. Concerning the 

possible forms, a forward spread 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇∗,𝑇𝑇) higher (lower) than the spot spread 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗) 

will imply, as expected, a positive (negative) slope in the interval [𝑇𝑇∗,𝑇𝑇]. However, the 

steepness will not only depend on the absolute difference between 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇∗,𝑇𝑇) and 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗), but also on the ratio 𝐴𝐴(𝑇𝑇∗,𝑇𝑇)/𝐴𝐴(𝑇𝑇). Following previous arguments, the higher 
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the risk of default up to 𝑇𝑇∗, the lower this ratio and, assuming other things equal, the 

flatter the TSCDS in the interval [𝑇𝑇∗,𝑇𝑇]. Thus, in effect, when it comes to analyzing a 

TSCDS, level and steepness cannot be dissociated. These results are consistent with 

predictions based on hazard rates and previous empirical evidence (Lando and Mortensen, 

2005).8 

A final implication from previous results is the possibility to interpret 

𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖) as the total contribution of the time interval (𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖] to the 

CDS spread with maturity 𝑇𝑇. Accordingly, the relative contribution will be 

𝑄𝑄(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇) =
𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) =
𝐵𝐵(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)
𝐵𝐵(𝑇𝑇) ∈ [0,1], (23) 

with  

�𝑄𝑄(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇) = 1
𝑁𝑁

𝑖𝑖=1

. (24) 

Equation (23) indicates that the relative contribution of one particular time interval 

(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖] to the spread of a CDS contract with maturity 𝑇𝑇 is given by the ratio between 

the following: the present value of $1 paid at default if this happens during that particular 

time interval, and the present value of $1 paid at default if this happens at any time during 

the life of the contract. The proximity of these two values would imply that the risk of 

default is concentrated in that specific time interval, thereby resulting in a significant 

                                                           
8 Practitioners usually think of forward CDS spreads as a function of spot spreads. Likewise, the term 
structure of forward CDS spreads is typically analyzed based on the TSCDS. From a practitioner’s point of 
view, this makes full sense. Trading normally concentrates on liquid spot contracts, so, if needed, a forward 
contract can be constructed synthetically from such spot contracts. However, from a strict economic 
interpretation, it makes more sense to think of spot spreads as a product of forward spreads.  
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contribution to the spread of the CDS contract. Evidently, the opposite result will be 

achieved if there is a significant difference between the two aforementioned values. 

5.4. Possible Extension to Portfolio Management 

 Previous results concentrate on the pricing of single-name credit risky securities 

at current (non-defaulting) time 0. However, they can be easily extended to portfolio 

management. As it has been shown, the combination of the TSCDS and the term structure 

of risk-free interest rates (TSIR) provides a direct estimate of the term structure of CRDF. 

Moreover, the prices of risky bonds, CDS contracts, and forward CDS contracts are 

simple functions of those CRDF. Consequently, the method provides a direct mapping 

between observable market risk factors (TSCDS and TSIR) and the prices of the most 

common single-name credit risky securities. The final implication is the possibility to 

translate the predicted distribution function for those market risk factors into a distribution 

function for the value of different credit risky portfolios using Monte Carlo simulations, 

which also represents and easy way path for the integration of market and credit risk.9  

6. Case Study: The Eurozone Crisis 

The Eurozone crisis provides an interesting framework to illustrate the pricing 

method presented in this study and some of its applications. It combines, in a short time, 

issuers with relatively low and extremely high CDS spread levels. We may also expect 

the liquidity of a CDS contract to be higher for France or Ireland than for an average 

corporation with a similar credit risk level. For the analyses that follow, CDS spreads 

with maturities ranging from 6-months to 5-years and a CR/CR14 restructuring clause are 

collected from Markit. It is assumed a constant risk-free rate equal to the 5-years swap 

                                                           
9 Clearly, this extension to portfolio management should incorporate the probability of a default event at 
the future pricing date. More precisely, the empirical evidence on the connection between historical/current 
CDS levels and the probability of a future default event should be accounted for. 
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rate and a recovery rate of 40%. Regarding the estimated forward CDS spreads, they will 

always refer to contracts with a total length of 1-year initiated either at time 0 (identical 

to a 1-year spot spread), 1, 2, 3, or 4.  

6.1. Examples of the Term Structure of CDS Spreads 

Figure 5 analyzes the case of France (March 15, 2011) and contains six panels. 

Panel 5A plots the TSCDS and reflects the effectively observed CDS spreads and the 

interpolated spreads. The resulting term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇) values are 

presented in Panels 5B, 5C, and 5E, respectively. Taken together, the information 

provided in these panels is representative of an investment-grade issuer. To begin, the 

overall level of the TSCDS is low and has a positive slope, which reflects the higher 

uncertainty associated with future time periods. Additionally, the smooth decline in 𝐶𝐶(𝑇𝑇) 

as the maturity increases seems to be more a reflection of the time value of money than 

of a significant growth in the risk of default. Consistent with this perception, 𝐵𝐵(𝑇𝑇) 

remains at low levels whereas 𝐴𝐴(𝑇𝑇) grows steadily. Panel 5E again depicts the TSCDS, 

although this time in combination with the estimated term structure of forward CDS 

spreads (TSFCDS) and, for comparison purposes, the term structure of the simple mean 

of forward CDS spreads (TSMFCDS). The panel also contains the actual weight of each 

forward CDS spread in the different spot spreads. In this particular example, such weights 

are always close to 1/𝑇𝑇; that is, all relevant forward CDS spreads have approximately the 

same influence on a given CDS spread. Consequently, the TSCDS is very similar to the 

TSMFCDS. Panel 5F provides the final contribution of each year of protection on each 

CDS spread. If we focus on the time decomposition of the 5-year CDS spread, the exact 

contributions of years 1, 2, 3, 4, and 5 are 8%, 13%, 19%, 28%, and 31%, respectively. 

As already reflected in Panel 5E, such differences are explained by the TSFCDS alone. 
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The actual weight of each forward spread on the 5-year spot spread is roughly the same, 

and, in fact, slightly decreasing. 

<Figure 5 about here> 

 Figure 6 reproduces Figure 5 in the case of Greece (September 13, 2011) and 

reveals a completely different situation. In Panel 6A, the risk of imminent default is 

already reflected in the rather extreme short-run CDS spreads.10 Consistent with this 

situation, the 𝐶𝐶(𝑇𝑇) value (Panel 6D) declines rapidly to reach just 49 cents of a euro for 

the maturity of 6-months and 10 cents for the maturity of 5-years. The 𝐵𝐵(𝑇𝑇) value (Panel 

6C) moves in the opposite direction: €0.50 for 6-months, and €0.88 for 5-years. 

Moreover, for those same maturities the 𝐴𝐴(𝑇𝑇) value (Panel 6B) reaches only 0.35 and 

1.20 euros, respectively. The results in Panel 6E reflect the predicted connection between 

level and steepness in the TSCDS (section 5.3). Namely, because of the low present value 

of future payments conditional on no-previous default, the corresponding forward spreads 

have a small weight on the spot spreads, and this, in turn, translates into a TSCDS that is 

significantly flatter than the TSMFCDS. For instance, while the weight of the first 

forward CDS spread in the 5-year spot CDS spread was 22% in the example of France, 

this same weight jumps to 46% in the case of Greece. This effectively explains why the 

significant drop in successive forward CDS spreads does not translate into a proportional 

reduction in spot spreads. Finally, as reflected in Panel 6F, the combination of a high first 

forward CDS spread (in fact, the highest one) and a high weight for this spread makes the 

                                                           
10 The initial proposal of a bond exchange with a nominal discount of 50% on notional Greek debt was 
made in the Euro Summit held on October 26, 2011, and was formally announced on February 21, 2012 
(see Zettelmeyer, Trebeschand and Gulati (2013) for details). On February 28, 2012, the International 
Swaps and Derivatives Association (ISDA) accepted a question related to a potential Hellenic Republic 
credit event. The occurrence of a credit event was initially denied by the ISDA on March 1, 2012, but was 
finally accepted on March 9, 2012, after a second question was formulated.  
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protection of year one account for 76% of the 5-year CDS spread. This is in sharp contrast 

to the corresponding value of 8% in the example of France. 

<Figure 6 about here> 

 Figure 7 repeats the same analysis for the case of Ireland (October 25, 2011). It 

provides an example of an intermediate, hump-shaped TSCDS that, for the rest, is 

consistent with previous results. 

<Figure 7 about here> 

6.2. The European Central Bank Intervention 

“The ECB is ready to do whatever it takes to preserve the Euro, and believe me; 

it will be enough.” 

Mario Dragui, President of the European Central Bank. July 26, 2012. 

 The risk of a collapse in the Eurozone forced the European Central Bank (ECB) 

to change its policy. It is well known that Dragui’s remark on July 26, 2012, and the 

decisions that followed had a significant impact on the credit spreads within the Eurozone. 

We can now analyze this impact in more detail. For ease of exposition and to save space, 

the analysis concentrates on the case of Spain. The results for other countries (e.g., Italy, 

Ireland, and Portugal) exhibit a similar pattern.  

 Table 2 contains the main descriptive statistics for the 6-month to 5-year CDS 

spreads on a weekly basis from January 2010 to December 2019.11 Figure 8 shows the 

analysis’ results and is composed of four panels. Panels 8A and 8B depict the evolution 

of spot and forward CDS spreads, and they both reflect the significant impact of Dragui’s 

                                                           
11 Zero and negative 5-year swap rates are sometimes observed starting March 2016. To avoid potential 
problems associated with non-positive risk-free interest rates, a minimum value of 0.01% is imposed. 
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statement on the cost of credit protection. Panels 8C and 8D focus on the composition of 

the 5-year CDS spreads. Regarding the weight of each forward spread (Panel 8C), the 

first forward CDS spread’s weight reaches its pick immediately before the announcement, 

while the weight of the last forward spread reaches its bottom. After Dragui’s remark, the 

weight of all forward spreads starts to converge until finally reflecting the situation of an 

investment-grade issuer (see the example of France). The evolution of each year’s 

contribution to the 5-year CDS spread (Panel 8D) confirms that the statement and the 

posterior policy change in the ECB did not only have a significant impact on the level, 

but also on the composition of the CDS spreads.  

<Table 2 about here> 

<Figure 8 about here> 

7. Conclusions 

This study introduces a simple no-arbitrage approach to pricing single-name credit 

risky securities that circumvents the estimation of risk-neutral default probabilities or 

hazard rates. Similar to the traditional estimation of implied discount factors in risk-free 

bond prices with different maturities, the method provides a direct estimate of credit risk 

discount factors from the term structure of credit default swap spreads. The proposal 

could thereby be seen as a "back to basics" exercise in credit risk pricing, based in fact on 

a financial innovation: the increasing liquidity of the full-term structure of credit default 

swap spreads. The possibility of adapting the method to other scenarios represents an 

interesting topic for further research.  
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Tables and Figures 

Table 1. Numerical example of the bootstrapping of credit risk discount factors. 

 

This table provides a numerical example of estimating the term structure of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇) based 

on the TSCDS and no-arbitrage conditions. Daily CDS spreads are obtained by linear interpolating CDS 

spreads with observed maturities (Obs. Mat.). Typically observed maturities and the initial values are 

indicated in bold format. It is assumed a constant risk-free rate of 2%, and a recovery rate of 40%. 

 

 

Obs. Mat.

0 - 0.00000 0.00000 1.00000

1/365 52.00 0.00274 0.00002 0.99992

2/365 52.13 0.00548 0.00005 0.99984

… … … … …

182/365 74.87 0.49477 0.00617 0.98393

6m 183/365 75.00 0.49746 0.00622 0.98383

184/365 75.13 0.50016 0.00626 0.98373

… … … … …

364/365 97.87 0.98065 0.01600 0.96439

1y 1 98.00 0.98329 0.01606 0.96427

… … … … …

2y 2 135.00 1.92535 0.04332 0.91817

… … … … …

3y 3 160.00 2.81911 0.07518 0.86844

… … … … …

4y 4 179.00 3.66234 0.10926 0.81749

… … … … …

5y 5 192.00 4.45534 0.14257 0.76832

… … … … …

7y 7 205.00 5.90342 0.20170 0.68023

… … … … …

10y 10 212.00 7.77503 0.27472 0.56978

𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐 𝑇𝑇 𝐴𝐴 𝑇𝑇 𝐶𝐶 𝑇𝑇𝐵𝐵 𝑇𝑇
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Table 2. Main descriptive statistics for the CDS spreads of Spain. 

 

This table provides the main descriptive statistics for the CDS spreads of Spain. Data are collected weekly 

for the inclusive period from January 2010 to December 2019.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistic cds(0.5) cds(1) cds(2) cds(3) cds(4) cds(5)

Mean 70.88 80.51 98.93 112.73 122.11 130.51

Median 23.30 31.13 47.49 60.21 70.79 80.76

Min 3.64 5.25 9.58 13.72 17.79 24.02

Max 375.53 409.00 486.14 503.25 504.31 504.15

SD 88.78 93.07 101.95 105.10 104.26 103.08
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Figure 1. Structure of payments for assets 𝑨𝑨, 𝑩𝑩, 𝑪𝑪, and 𝑫𝑫 with maturity 𝑻𝑻. 
 

 

 

 

 

 

 

 

 

 

 

This figure describes the structure of payments for assets 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 with maturity 𝑇𝑇 > 0. The possible 

outcomes each day are no default (𝑁𝑁𝑁𝑁) or default (𝐷𝐷). 
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Figure 2. Daily structure of the premium leg in a CDS contract with maturity 𝑻𝑻. 
 

 

 

 

 

 

 

 

 

 

 

This figure describes the daily structure of the premium leg in a CDS contract with maturity 𝑇𝑇 > 0. The 

possible outcomes each day are no default (𝑁𝑁𝑁𝑁) or default (𝐷𝐷). 
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Figure 3. Daily structure of the protection leg in a CDS contract with maturity 𝑻𝑻.  
 

 

 

 

 

 

 

 

 

 

 

This figure describes the daily structure of the protection leg in a CDS contract with maturity 𝑇𝑇 > 0. The 

possible outcomes each day are no default (𝑁𝑁𝑁𝑁) or default (𝐷𝐷). 
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Figure 4. Numerical example of the bootstrapping of credit risk discount factors.  

     

     

This figure plots the results of the numerical example, where the term structure of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇) 

is estimated based on the TSCDS and no-arbitrage conditions. The red point indicates that the CDS spread 

corresponds to a typically observed maturity: 6m, 1y, 2y, 3y, 4y, 5y, 7y, or 10y. 
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Figure 5. Analysis and time decomposition of the TSCDS for France - March 15, 2011.  

     

     

     

This figure shows the results of the analysis and time decomposition of the TSCDS for France on March 

15, 2011. Panel 5A plots the TSCDS (the red point indicates an observed CDS spread). Panels 5B, 5C, and 

5D depict the term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇), respectively. Panel 5E plots the TSCDS, TSFCDS, 

and TSMFCDS. The actual weight of each forward CDS spread on each spot CDS spread is also provided. 

Panel 5F shows the final decomposition of each CDS spread.  
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Figure 6. Analysis and time decomposition of the TSCDS for Greece - September 13, 2011.  

     

     

     

This figure shows the results of the analysis and time decomposition of the TSCDS for Greece on September 

13, 2011. Panel 6A plots the TSCDS (the red point indicates an observed CDS spread). Panels 6B, 6C, and 

6D depict the term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇), respectively. Panel 6E plots the TSCDS, TSFCDS, 

and TSMFCDS. The actual weight of each forward CDS spread on each spot CDS spread is also provided. 

Panel 6F shows the final decomposition of each CDS spread.  
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Figure 7. Analysis and time decomposition of the TSCDS for Ireland - October 25, 2011.  

     

     

     

This figure shows the results of the analysis and time decomposition of the TSCDS for Ireland on October 

25, 2011. Panel 7A plots the TSCDS (the red point indicates an observed CDS spread). Panels 7B, 7C, and 

7D depict the term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇), respectively. Panel 7E plots the TSCDS, TSFCDS, 

and TSMFCDS. The actual weight of each forward CDS spread on each spot CDS spread is also provided. 

Panel 7F shows the final decomposition of each CDS spread.  
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Figure 8. Analysis and time decomposition of the TSCDS for Spain. January 2010 – December 2019.  

     

     

This figure shows the results of the analysis and time decomposition of the TSCDS for Spain within the 

inclusive period from January 2010 to December 2019. Panel 8A plots the time series of one to 5-year CDS 

spreads. Panel 8B depicts the time series of forward CDS spreads. Panel 8C describes the evolution of the 

weight of each forward CDS spread on the 5-year CDS spread. Panel 8D plots the time series of the final 

decomposition of the 5-year CDS spread. 
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